void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return task_1.completed < task_2.completed; // 未完成的任务排在已完成的任务前面 } else { return task_1.priority < task_2.priority; // 同一完成状态下,按照优先级排序 } }); for (const auto& task : tasks) { //std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (task.completed == 0) { // 只分配未完成的任务 AGV* closest_agv = nullptr; int wait_time = 0; // 等待时间计数器 // 初始化为 nullptr while (closest_agv == nullptr && wait_time < 1) { // 最多等待 1 秒钟 // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); wait_time++; } } if (closest_agv != nullptr) { // 找到可用小车 // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->set_task_id(task.id); closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); // 小车被占用 task.completed = 1; // 任务状态修改为进行中 std::cout << "agv_id" << closest_agv->getid() << "————" << "task_id"<<task.id << "task_completed"<< task.completed << endl; } else { std::cout << "task_id-" << task.id << "No available AGV!" << "task_completed"<< task.completed <<endl; } } },修改代碼為在最後輸出所有task的agvid,taskid和task的completed

时间: 2023-12-10 08:40:28 浏览: 27
可以在遍历完所有任务后,再次遍历任务列表,输出每个任务所分配的 AGV id、任务 id 和完成状态。具体修改代码如下: ``` void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return task_1.completed < task_2.completed; // 未完成的任务排在已完成的任务前面 } else { return task_1.priority < task_2.priority; // 同一完成状态下,按照优先级排序 } }); for (const auto& task : tasks) { //std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (task.completed == 0) { // 只分配未完成的任务 AGV* closest_agv = nullptr; int wait_time = 0; // 等待时间计数器 // 初始化为 nullptr while (closest_agv == nullptr && wait_time < 1) { // 最多等待 1 秒钟 // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); wait_time++; } } if (closest_agv != nullptr) { // 找到可用小车 // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->set_task_id(task.id); closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); // 小车被占用 task.completed = 1; // 任务状态修改为进行中 // 输出任务分配情况 std::cout << "AGV id: " << closest_agv->getid() << ", Task id: " << task.id << ", Completed: " << task.completed << std::endl; } else { std::cout << "Task id: " << task.id << ", No available AGV!" << ", Completed: " << task.completed << std::endl; } } } } ```

相关推荐

void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return !task_1.completed; } else { return task_1.priority < task_2.priority; } }); for (const auto& task : tasks) { std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (!task.completed) { AGV* closest_agv = nullptr; // 初始化为 nullptr while (closest_agv == nullptr) { // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); } } // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); task.completed = true; std::cout << closest_agv->getid() << "," << task.id << endl; } } },一運行,就卡死,怎麽解決

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

软件设计师讲义.md

软件设计师讲义.md
recommend-type

时间序列预测,股票方向应用,使用transformer-lstm融合的模型算法

适用人群 针对有一定机器学习和深度学习背景的专业人士,特别是那些对时间序列预测和Transformer以及LSTM模型有兴趣的人。需要一定的Python知识基础 适用场景 用于处理时间序列数据,尤其是在金融领域,示例是股票价格预测。Transformer模型和LSTM的混合使用表明,代码的目的是利用这两种模型的优势来提高预测准确性。 目标 代码的主要目标是利用Transformer模型和LSTM模型来预测时间序列数据,如股票价格。通过实现这两种模型,代码旨在提供一个强大的工具来进行更准确的时间序列分析和预测。
recommend-type

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。