DenseNet 11*11图像大小分类代码
时间: 2023-07-30 08:10:16 浏览: 90
densenet模型-图像分类算法对是否佩戴口罩识别-不含数据集图片-含逐行注释和说明文档.zip
以下是使用DenseNet在11*11图像上进行分类的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, BatchNormalization, Activation, AveragePooling2D, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Concatenate
def densenet_block(x, num_filters):
# Bottleneck layer
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(4*num_filters, kernel_size=1, padding='same', kernel_initializer='he_normal')(x)
# Composite function
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(num_filters, kernel_size=3, padding='same', kernel_initializer='he_normal')(x)
return x
def densenet_stack(x, num_layers, num_filters):
for i in range(num_layers):
y = densenet_block(x, num_filters)
x = Concatenate()([x, y])
return x
# Define hyperparameters
num_classes = 10
num_layers_per_block = 4
num_filters = 32
compression_factor = 0.5
# Define model
inputs = Input(shape=(11, 11, 3))
x = Conv2D(num_filters, kernel_size=3, padding='same', kernel_initializer='he_normal')(inputs)
for i in range(3):
x = densenet_stack(x, num_layers_per_block, num_filters)
num_filters = int(num_filters * compression_factor)
x = Conv2D(num_filters, kernel_size=1, padding='same', kernel_initializer='he_normal')(x)
x = AveragePooling2D(pool_size=2)(x)
x = Flatten()(x)
outputs = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
# Compile model
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999),
metrics=['accuracy'])
# Load data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
# Define image augmentations
datagen = ImageDataGenerator(
rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True
)
# Define learning rate schedule
def lr_schedule(epoch):
lr = 1e-3
if epoch > 50:
lr *= 0.1
elif epoch > 25:
lr *= 0.5
return lr
# Train model
model.fit_generator(
datagen.flow(x_train, y_train, batch_size=32),
epochs=75,
validation_data=(x_test, y_test),
callbacks=[LearningRateScheduler(lr_schedule)]
)
```
这个模型基于DenseNet的思想,使用了一个堆积的DenseNet块来构建网络。每个块由多个DenseNet层组成,每个层都通过连接前面所有层的方式进行连接,以最大化信息流动。这个代码片段还包括了数据增强和动态学习率调整的功能,以帮助提高模型的性能。
阅读全文