解释int len = MaxLen_Buf>iTmp?iTmp:MaxLen_Buf;

时间: 2024-04-25 14:27:06 浏览: 16
这段代码是一个三目运算符,用于计算len的值。 三目运算符的一般形式为:条件表达式? 值1 : 值2。如果条件表达式的值为真,则返回值1;否则,返回值2。 在这段代码中,条件表达式为MaxLen_Buf>iTmp,如果该表达式的值为真,则返回iTmp作为len的值;否则,返回MaxLen_Buf作为len的值。 换句话说,如果iTmp小于或等于MaxLen_Buf,则len的值为iTmp;否则,len的值为MaxLen_Buf。这样,确保了len的值不会超过MaxLen_Buf,并且能够读取到接收缓冲区中的所有数据。
相关问题

void CIEC104SubLinkLayer::run_rx( PROTO_PARA_RX* rx ) { // 取数据到本地缓冲区 int iTmp; iTmp = this->m_env->m_RxBuf.GetReadableLen(); if( iTmp>0 ) { // 查找报文头 uint8 buf[MaxLen_Buf]; int len = MaxLen_Buf>iTmp?iTmp:MaxLen_Buf; int move; this->m_env->m_RxBuf.Read( buf,len, DONT_MOVEFWD ); for( move=0;move<len;move++ ) if( buf[move] == 0x68 ) break; if( move>=len ) // 没有找到报文头 { this->m_env->m_RxBuf.MoveReadP(move); return; } // 解析数据 CFrameLink frame; uint8 flag; if ((m_Flag & IEC104_FLAG_STARTDT) || m_dataTransflag) { flag = 1; } else flag = 0; KFprintf("%s-%d flag=%d\n",__FILE__,__LINE__,flag); frame.setstartDTFlag(flag); iTmp = frame.decode( buf+move,len-move ); m_StoppedRecIflagLink = frame.getStoppedRecIflag(); ////2018.5.28 zbc 开普测试 stopped状态下收到I帧要断连接 if(m_StoppedRecIflagLink != 0) if( iTmp < 0 )//错误 { // 检测是否无效帧 //if( this->m_env->m_RxBuf.GetReadableLen()>=MaxLen_Buf ) this->m_env->m_RxBuf.MoveReadP(move + ABS(iTmp)); //移动MOVE + ABS(iTmp) return; } else if( iTmp == 0 )//没有收够一个帧,不移动指针 { return; } m_env->AddRxFrames( 1,iTmp ); m_env->m_iRxRetFlag = 1; protocolCall.PutProtocolRxGram( rx->channo,buf+move,iTmp ); // 移动读指针 move +=iTmp; this->m_env->m_RxBuf.MoveReadP(move); GetUpTime(&m_lastRecvDataTime); //m_ifTestingLink = false; static int32 scount =0; // 处理.根据帧类型处理 uint8 frameType = frame.getFrameType(); if( frameType==FrameLink_Type_U ) { //通道测试确认帧 if( frame.getTestFrConf()==1 ) { m_Flag &= ~IEC104_FLAG_UT1; GetUpTime( &m_TimeOut_NoGram ); return; } //通道测试帧 if( frame.getTestFrAvai()!=0 ) { frame.setTestFrAvai( 0x00 ); frame.setTestFrConf( 0x01 ); KFprintf("%s:%d 104 m_iDataMgrNo=%d\n",__FILE__,__LINE__,m_env->m_iDataMgrNo); }

这是一个 C++ 类 `CIEC104SubLinkLayer` 的成员函数 `run_rx` 的代码实现。该函数的作用是从环境变量 `m_RxBuf` 中读取数据,并解析成 104 协议的帧数据,并将解析后的帧数据传递给上层协议处理。具体来说,该函数先通过 `m_RxBuf.GetReadableLen()` 获取当前缓冲区中可读取的字节数,并将其存储在 `iTmp` 变量中。如果 `iTmp` 大于 0,则创建一个长度为 `MaxLen_Buf` 的字节数组 `buf`,并从 `m_RxBuf` 中读取 `len` 个字节的数据到 `buf` 中。接着在 `buf` 中查找 0x68 字节,如果找到则解析帧数据,解析出错则忽略该帧。如果解析成功,则将解析得到的帧数据传递给上层协议处理,并将读指针移动到下一个待解析的数据帧的起始位置。最后,根据收到的帧类型处理,如果是测试帧则进行相应处理。

解释:self.memory_buffer = deque(maxlen=memory_size)

### 回答1: 这是一行Python代码,它创建了一个双端队列(deque)对象,并将其存储到了self.memory_buffer变量中。这个队列的长度被限制为memory_size,如果队列已满,它会自动移除最旧的元素,以便为新元素腾出空间。因此,这个队列被用来存储一定数量的过去状态,以帮助某个程序在接下来的计算中做出更好的决策。 ### 回答2: self.memory_buffer = deque(maxlen=memory_size)是一行Python代码,它的作用是创建一个deque(双端队列)对象,并设置其最大长度为memory_size。 deque是Python标准库collections中的一个数据结构,它类似于列表(list),但提供了更高效的操作。deque的特点在于它可以从两端进行插入和删除操作,并且对内部元素的访问也很高效。 在这行代码中,我们使用deque来创建一个存储记忆的缓冲区,用于在机器学习的一些算法中进行经验回放(experience replay)。经验回放是一种用于增强学习(reinforcement learning)中的方法,它通过将过去的经验随机地从缓冲区中抽样出来,来平衡训练数据的分布,从而提高学习的效果。 为了限制缓冲区的大小,我们使用了deque的参数maxlen。当缓冲区中的元素数量超过maxlen时,新的元素将从另一端删除,以确保缓冲区的大小保持恒定。 总之,这行代码的作用是创建一个双端队列对象,用于存储记忆并进行经验回放,在机器学习中的一些算法中起到了重要的作用。 ### 回答3: self.memory_buffer = deque(maxlen=memory_size)这段代码的作用是创建一个双端队列(deque)对象,并设置其最大长度为memory_size。 双端队列是一种具有队列和栈的特性的数据结构,它可以在两端进行插入和删除操作。在这段代码中,我们使用了Python的collections模块中的deque类来实现双端队列。 deque(maxlen=memory_size)的参数maxlen表示双端队列的最大长度,当队列长度达到最大值时,再添加新的元素时,会自动删除队列中最旧的元素。 在这里,我们将创建的双端队列赋值给了self.memory_buffer,使用self.memory_buffer作为一个存储记忆的缓冲区。 通常,该代码片段在实现强化学习的算法中经常被用到。在强化学习中,智能体通过与环境的交互来学习,并将这个过程中的经验存储在记忆缓冲区中。存储在记忆缓冲区中的经验可以用来进行批量学习,提高算法的效率和稳定性。 通过使用双端队列,可以确保存储的记忆不会超过设定的最大长度,避免了内存溢出的问题。同时,新的经验会自动替换最旧的经验,确保记忆缓冲区中存储的是最新的经验。 因此,self.memory_buffer = deque(maxlen=memory_size)这段代码的作用是创建一个具有最大长度为memory_size的双端队列,并将其赋值给self.memory_buffer。这样就可以在强化学习算法中使用self.memory_buffer来存储和管理智能体的经验。

相关推荐

tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(data['text']) sequences = tokenizer.texts_to_sequences(data['text']) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences,maxlen=maxlen) labels = np.array(data[:,:1]) print('Shape of data tensor:',data.shape) print('Shape of label tensor',labels.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] x_train = data[:traing_samples] y_train = data[:traing_samples] x_val = data[traing_samples:traing_samples+validation_samples] y_val = data[traing_samples:traing_samples+validation_samples] model = Sequential() model.add(Embedding(max_words,100,input_length=maxlen)) model.add(Flatten()) model.add(Dense(32,activation='relu')) model.add(Dense(10000,activation='sigmoid')) model.summary() model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(x_train,y_train, epochs=1, batch_size=128, validation_data=[x_val,y_val]) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epoachs = range(1,len(acc) + 1) plt.plot(epoachs,acc,'bo',label='Training acc') plt.plot(epoachs,val_acc,'b',label = 'Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epoachs,loss,'bo',label='Training loss') plt.plot(epoachs,val_loss,'b',label = 'Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() max_len = 10000 x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len) x_test = data[10000:,0:] x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_len) # 将标签转换为独热编码 y_train = np.eye(2)[y_train] y_test = data[10000:,:1] y_test = np.eye(2)[y_test]

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩