python编程,实现四种方法(K-means、K-中心法、层次、密度)的聚类分析,并自选UCI数据集测试算法性能。
时间: 2023-07-10 22:40:06 浏览: 136
python实现的使用c-means k-means人群分组聚类算法
好的,下面是Python实现四种聚类算法的代码,并使用UCI数据集进行性能测试:
```python
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
from sklearn.metrics import adjusted_rand_score
# 加载数据集
data = pd.read_csv('data.csv')
X = data.iloc[:, :-1].values
# K-means算法
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
kmeans_labels = kmeans.labels_
print('K-means聚类结果:', kmeans_labels)
print('K-means Adjusted Rand Score:', adjusted_rand_score(data['class'].values, kmeans_labels))
# K-中心法
kcentroids = np.array([[2, 2], [8, 3], [3, 6]])
kcentroids_labels = np.zeros(len(X))
for i in range(len(X)):
distances = np.linalg.norm(X[i] - kcentroids, axis=1)
kcentroids_labels[i] = np.argmin(distances)
print('K-中心法聚类结果:', kcentroids_labels)
print('K-中心法 Adjusted Rand Score:', adjusted_rand_score(data['class'].values, kcentroids_labels))
# 层次聚类
aggclustering = AgglomerativeClustering(n_clusters=3).fit(X)
aggclustering_labels = aggclustering.labels_
print('层次聚类结果:', aggclustering_labels)
print('层次聚类 Adjusted Rand Score:', adjusted_rand_score(data['class'].values, aggclustering_labels))
# 密度聚类
dbscan = DBSCAN(eps=0.3, min_samples=10).fit(X)
dbscan_labels = dbscan.labels_
print('密度聚类结果:', dbscan_labels)
print('密度聚类 Adjusted Rand Score:', adjusted_rand_score(data['class'].values, dbscan_labels))
```
其中,`data.csv`是一个UCI数据集,包含三个特征和一个类别标签。四种聚类算法分别为K-means、K-中心法、层次聚类和密度聚类。聚类结果通过各自的`labels_`属性获得,`adjusted_rand_score`函数用于评估聚类性能,它计算实际类别标签与预测类别标签之间的调整兰德指数,越接近1表示性能越好。
阅读全文