plot([Qnew(2), T.v(minInd).y],[Qnew(1),T.v(minInd).x],'b','LineWidth',2); pause(0.01)
时间: 2024-01-30 12:01:43 浏览: 147
这段代码是在RRT算法的可视化部分,它的作用是将搜索到的新节点与其父节点之间的路径用蓝色线段绘制出来,并暂停0.01秒以便观察。具体来说,plot函数用于绘制直线段,输入参数为起点和终点坐标,'b'表示蓝色线段,'LineWidth'表示线段宽度。pause函数用于暂停程序执行一段时间,方便观察可视化结果。
相关问题
优化这行代码:%开始主循环 for iter = 1:MaxIter %step1.生成随机点 n = rand(); Prand = n < 0.5 ? [unifrnd(0,x_l),unifrnd(0,y_l)] : goal; end %step2.遍历树找到最近点 minDis = sqrt((Prand(1) - T.v(1).x)^2 + (Prand(2) - T.v(1).y)^2); minInd = 1; dis = sqrt((Prand(1) - [T.v(:).x]').^2 + (Prand(2) - [T.v(:).y]').^2); [minDis, minInd] = min(dis); end end %step3.扩展得到新节点 Pnew = [T.v(minInd).x,T.v(minInd).y] + step * ([Prand(1),Prand(2)] - [T.v(minInd).x,T.v(minInd).y]) / norm([Prand(1),Prand(2)] - [T.v(minInd).x,T.v(minInd).y]); tmp_cost = T.v(minInd).cost + step; % disp('befor check!'); %step4.检查是否碰撞 continue_flag = iscollision1(Pnear,Pnew,Pvec,Img); continue_flag = continue_flag ? continue : []; %step5.父节点重选择,在给定半径里面选择父节dian for i = i:size(T.v,2) dis = sqrt((Pnew(1) - [T.v(:).x]').^2 + (Pnew(2) - [T.v(:).y]').^2); valid_ind = find(dis <= r); for i = valid_ind this_cost = dis(i) + T.v(i).cost; if this_cost < tmp_cost this_p = [T.v(i).x,T.v(i).y]; if iscollision2(this_p,Pnew,dis(i),Img) continue; end tmp_cost = this_cost; minInd = i; end end end %step6.将Pnew插入到树中 T.v(end+1) = struct('x',Pnew(1),'y',Pnew(2),'xPre',T.v(minInd).x,'yPre',T.v(minInd).y,'cost',tmp_cost,'indPre',minInd); %画出生长出的树枝 plot([Pnew(2), T.v(minInd).y],[Pnew(1),T.v(minInd).x],'b','LineWidth',2); pause(0.01) %step7.重连接,以Pnew为父节点 for i = i:size(T.v,2)-1 dis = sqrt((Pnew(1) - [T.v(:).x]').^2 + (Pnew(2) - [T.v(:).y]').^2); valid_ind = find(dis < r & (1:length(T.v) ~= minInd)); for i = valid_ind this_cost = dis(i) + tmp_cost; if this_cost < T.v(i).cost this_p = [T.v(i).x,T.v(i).y]; if iscollision2(this_p,Pnew,dis(i),Img) continue; end T.v(i).cost = this_cost; T.v(i).xPre = Pnew(1); T.v(i).yPre = Pnew(2); T.v(i).indPre = k; end end end %step8.检查是否到达目标点附近 dis2goal = sqrt((Pnew(1) - goal(1))^2 + (Pnew(2) - goal(2))^2); flag = dis2goal < threshold; k = flag*(size(T.v,2) + 1); T.v(k).x = flaggoal(1); T.v(k).y = flaggoal(2); T.v(k).xPre = flagPnew(1); T.v(k).yPre = flagPnew(2); T.v(k).cost = flag*(T.v(k-1).cost + dis2goal); T.v(k).indPre = flag*(k - 1); if flag disp('find path!'); break; end
这段代码的主要问题在于有重复的循环变量名,导致后面的循环会覆盖前面的循环变量。建议将内部循环的变量名修改为其他名称,避免冲突。
另外,可以考虑使用向量化的方式来优化代码,减少循环次数,提高运行效率。例如,可以将一些循环中的操作改为矩阵运算或者向量化函数。
还有一些小细节可以优化,例如可以将一些常用的计算结果保存下来,避免重复计算,提高效率。
最后,建议在代码中加入注释,以方便理解和维护。
阅读全文