keras用train_on_batch训练怎么画loss曲线

时间: 2023-04-12 22:00:33 浏览: 49
你可以使用 Matplotlib 库来画出 Keras 训练过程中的 loss 曲线。首先,你需要在每个 epoch 结束后记录 loss 值,然后将这些值存储在一个列表中。接下来,你可以使用 Matplotlib 的 plot 函数来绘制 loss 曲线。下面是一个示例代码: ```python import matplotlib.pyplot as plt # 记录每个 epoch 的 loss 值 losses = [] for epoch in range(num_epochs): # 在每个 epoch 结束后,使用 train_on_batch 训练模型,并记录 loss 值 loss = model.train_on_batch(x_train, y_train) losses.append(loss) # 绘制 loss 曲线 plt.plot(losses) plt.title('Training Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() ``` 这段代码会在训练过程中记录每个 epoch 的 loss 值,并使用 Matplotlib 绘制出 loss 曲线。
相关问题

d_loss_real = discriminator.train_on_batch([imgs_A, imgs_B], valid)

这也是一个深度学习模型中的训练步骤,使用了对抗生成网络(Generative Adversarial Networks, GANs)。train_on_batch()是Keras框架中Model类的一个方法,用于在一个batch上训练模型。 在这个训练步骤中,imgs_A和imgs_B是两个输入图像集合,valid是一个标签,表示这些图像是真实的。该训练步骤的目的是训练一个判别器网络,使其能够将真实的图像imgs_A和imgs_B与生成的图像区分开来。判别器网络的损失函数包括两部分,一部分是将真实图像判别为真实的损失,另一部分是将生成的图像判别为虚假的损失。该训练步骤的返回值是损失函数的值。

from datasets.pyro_dataset import PyroClientDataset from network import Unet from spine_localization_postprocessing import bb, bb_iou from tensorflow.keras.mixed_precision import experimental as mixed_precision from tensorflow_train_v2.dataset.dataset_iterator import DatasetIterator from tensorflow_train_v2.train_loop import MainLoopBase from tensorflow_train_v2.utils.data_format import get_batch_channel_image_size from tensorflow_train_v2.utils.loss_metric_logger import LossMetricLogger from tensorflow_train_v2.utils.output_folder_handler import OutputFolderHandler from tqdm import tqdm

这段代码看起来是一个深度学习项目的一部分。它导入了一些自定义的模块和库,包括PyroClientDataset、Unet、spine_localization_postprocessing、mixed_precision等。它还使用了一些来自TensorFlow的模块和函数,如DatasetIterator、MainLoopBase、LossMetricLogger等。代码中还使用了tqdm库来显示进度条。 这段代码的具体功能和用途可能需要查看其他部分的代码才能确定。

相关推荐

帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import os BATCH_SIZE = 64 EPOCHS = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 train_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) test_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_dataset = datasets.ImageFolder(validation_dir, transform=test_transforms) test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = nn.Sequential( nn.Conv2d(3, 16, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64 * (IMG_HEIGHT // 8) * (IMG_WIDTH // 8), 256), nn.ReLU(), nn.Linear(256, 2), nn.Softmax(dim=1) ) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(EPOCHS): train_loss = 0.0 train_acc = 0.0 model.train() for images, labels in train_loader: images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc / len(train_loader.dataset) print('Epoch: {} \tTraining Loss: {:.6f} \tTraining Accuracy: {:.6f}'.format(epoch+1, train_loss,train_acc)) with torch.no_grad(): test_loss = 0.0 test_acc = 0.0 model.eval() for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc / len(test_loader.dataset) print('Test Loss: {:.6f} \tTest Accuracy: {:.6f}'.format(test_loss,test_acc))
以下是对代码的优化: 1. 使用更加简洁的导入方式: from tensorflow import keras import tensorflow as tf import numpy as np 2. 将模型的架构定义为一个函数,这样可以使代码更加清晰: def build_model(): model = keras.Sequential([ keras.layers.Embedding(10000, 16), keras.layers.GlobalAveragePooling1D(), keras.layers.Dense(16, activation=tf.nn.relu), keras.layers.Dense(1, activation=tf.sigmoid) ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model 3. 使用 EarlyStopping 和 ModelCheckpoint 回调函数来提高模型的性能: early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) model_checkpoint = keras.callbacks.ModelCheckpoint('best_model.h5', save_best_only=True) history = model.fit(train_data, train_labels, epochs=40, batch_size=512, validation_data=(test_data, test_labels), verbose=1, callbacks=[early_stop, model_checkpoint]) 4. 使用更加简洁的方式来输出测试结果: loss, accuracy = model.evaluate(test_data, test_labels) print(f'Test loss: {loss}, Test accuracy: {accuracy}') 综上所述,我们可以对代码进行如下的优化: from tensorflow import keras import tensorflow as tf import numpy as np def build_model(): model = keras.Sequential([ keras.layers.Embedding(10000, 16), keras.layers.GlobalAveragePooling1D(), keras.layers.Dense(16, activation=tf.nn.relu), keras.layers.Dense(1, activation=tf.sigmoid) ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model # 加载 IMDB 数据集 (train_data, train_labels), (test_data, test_labels) = keras.datasets.imdb.load_data(num_words=10000) # 将整数序列填充为相同的长度 maxlen = 256 train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=0, padding='post', maxlen=maxlen) test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=0, padding='post', maxlen=maxlen) # 构建模型 model = build_model() # 使用 EarlyStopping 和 ModelCheckpoint 回调函数来提高模型的性能 early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) model_checkpoint = keras.callbacks.ModelCheckpoint('best_model.h5', save_best_only=True) # 训练模型 history = model.fit(train_data, train_labels, epochs=40, batch_size=512, validation_data=(test_data, test_labels), verbose=1, callbacks=[early_stop, model_checkpoint]) # 在测试数据上评估模型 loss, accuracy = model.evaluate(test_data, test_labels) print(f'Test loss: {loss}, Test accuracy: {accuracy}')
在 Keras 中使用 Model Profiler,需要先安装 tensorflow_model_profiler 库。然后,你需要使用 tf.profiler.experimental.Profile 函数来创建一个 profiler 对象,该函数需要传递一个 TensorFlow Session 或者 TensorFlow Graph 对象作为参数。接下来,你可以使用 profiler 对象的方法来分析模型性能、内存使用情况等等。 以下是一个使用 Model Profiler 的示例代码: python import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import models from tensorflow.keras.datasets import mnist from tensorflow.keras.utils import to_categorical from tensorflow.python.profiler import profiler_v2 as profiler # 加载MNIST数据集 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 数据预处理 train_images = train_images.reshape((60000, 28*28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28*28)) test_images = test_images.astype('float32') / 255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 构建模型 model = models.Sequential() model.add(layers.Dense(512, activation='relu', input_shape=(28*28,))) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 创建 profiler 对象 profiler.start(logdir='logs') # 训练模型 history = model.fit(train_images, train_labels, epochs=5, batch_size=128, validation_data=(test_images, test_labels)) # 分析模型性能 profiler.stop() 在上面的示例代码中,我们使用 profiler.start(logdir='logs') 创建了一个 profiler 对象,并指定了日志输出目录。然后,我们训练了一个简单的神经网络模型,并使用 model.fit() 方法进行训练。最后,我们使用 profiler.stop() 方法停止 profiler 分析,并输出日志到指定的日志目录中。你可以使用 TensorBoard 工具来可视化分析结果。

import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%

请分析这段代码:# 定义数据集路径 train_dir = 'dataset/train/' test_dir = 'dataset/test/' # 定义图像大小和批次大小 image_size = 100 batch_size = 16 # 定义训练集和验证集的图像生成器 train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) test_datagen = ImageDataGenerator(rescale=1./255) # 生成训练集和验证集 train_generator = train_datagen.flow_from_directory( train_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode='categorical' ) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode='categorical' ) # 定义模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_size, image_size, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(2, activation='softmax')) # 编译模型 model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit_generator( train_generator, epochs=50, validation_data=test_generator ) # 保存模型 model.save('mask_detection.h5')

代码time_start = time.time() results = list() iterations = 2001 lr = 1e-2 model = func_critic_model(input_shape=(None, train_img.shape[1]), act_func='relu') loss_func = tf.keras.losses.MeanSquaredError() alg = "gd" # alg = "gd" for kk in range(iterations): with tf.GradientTape() as tape: predict_label = model(train_img) loss_val = loss_func(predict_label, train_lbl) grads = tape.gradient(loss_val, model.trainable_variables) overall_grad = tf.concat([tf.reshape(grad, -1) for grad in grads], 0) overall_model = tf.concat([tf.reshape(weight, -1) for weight in model.weights], 0) overall_grad = overall_grad + 0.001 * overall_model ## adding a regularization term results.append(loss_val.numpy()) if alg == 'gd': overall_model -= lr * overall_grad ### gradient descent elif alg == 'gdn': ## gradient descent with nestrov's momentum overall_vv_new = overall_model - lr * overall_grad overall_model = (1 + gamma) * oerall_vv_new - gamma * overall_vv overall_vv = overall_new pass model_start = 0 for idx, weight in enumerate(model.weights): model_end = model_start + tf.size(weight) weight.assign(tf.reshape()) for grad, ww in zip(grads, model.weights): ww.assign(ww - lr * grad) if kk % 100 == 0: print(f"Iter: {kk}, loss: {loss_val:.3f}, Duration: {time.time() - time_start:.3f} sec...") input_shape = train_img.shape[1] - 1 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(input_shape,)), tf.keras.layers.Dense(30, activation="relu"), tf.keras.layers.Dense(20, activation="relu"), tf.keras.layers.Dense(1) ]) n_epochs = 20 batch_size = 100 learning_rate = 0.01 momentum = 0.9 sgd_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum) model.compile(loss="mean_squared_error", optimizer=sgd_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl)) nag_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum, nesterov=True) model.compile(loss="mean_squared_error", optimizer=nag_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl))运行后报错TypeError: Missing required positional argument,如何改正

在 Keras 中,我们可以使用 Keras 自带的 Adam 优化器和 SparseCategoricalCrossentropy 损失函数来构建一个和 slim.create_global_step() 等价的模型: python import tensorflow as tf # 定义模型 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) # 定义优化器和损失函数 optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # 定义评估指标 train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') # 定义训练循环 @tf.function def train_step(images, labels): with tf.GradientTape() as tape: # 前向传播 predictions = model(images) # 计算损失 loss = loss_object(labels, predictions) # 计算梯度 gradients = tape.gradient(loss, model.trainable_variables) # 更新模型参数 optimizer.apply_gradients(zip(gradients, model.trainable_variables)) # 更新评估指标 train_loss(loss) train_accuracy(labels, predictions) # 定义数据集 train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32) # 定义训练过程 for epoch in range(10): # 迭代数据集 for images, labels in train_dataset: # 执行训练步骤 train_step(images, labels) # 输出训练结果 template = 'Epoch {}, Loss: {}, Accuracy: {}' print(template.format(epoch + 1, train_loss.result(), train_accuracy.result() * 100)) # 重置评估指标 train_loss.reset_states() train_accuracy.reset_states() 在该实现中,我们创建了一个 Keras 的 Sequential 模型,将其用于训练手写数字识别。我们使用了 Keras 自带的 Adam 优化器和 SparseCategoricalCrossentropy 损失函数来进行训练,并统计了训练过程中的损失和准确率。在训练过程中,我们使用 @tf.function 来应用 TensorFlow 的 Autograph 技术,加速训练的过程。 Keras 的训练过程同样是基于迭代器 train_dataset 的,我们在每个epoch中处理每个batch,然后执行 train_step 函数来更新模型权重和评估指标。最后我们计算并打印出训练结果。

import numpy as np import matplotlib.pyplot as plt from keras.layers import Dense,LSTM,Dropout from keras.models import Sequential # 加载数据 X = np.load("X_od.npy") Y = np.load("Y_od.npy") # 数据归一化 max = np.max(X) X = X / max Y = Y / max # 划分训练集、验证集、测试集 train_x = X[:1000] train_y = Y[:1000] val_x = X[1000:1150] val_y = Y[1000:1150] test_x = X[1150:] test_y = Y # 构建LSTM模型 model = Sequential() model.add(LSTM(units=64, input_shape=(5, 109))) model.add(Dropout(0.2)) model.add(Dense(units=109, activation='linear')) model.summary() # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False) # 评估模型 test_loss = model.evaluate(test_x, test_y) print('Test loss:', test_loss) # 模型预测 train_predict = model.predict(train_x) val_predict = model.predict(val_x) test_predict = model.predict(test_x) # 预测结果可视化 plt.figure(figsize=(20, 8)) plt.plot(train_y[-100:], label='true') plt.plot(train_predict[-100:], label='predict') plt.legend() plt.title('Training set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(val_y[-50:], label='true') plt.plot(val_predict[-50:], label='predict') plt.legend() plt.title('Validation set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(test_y[:50], label='true') plt.plot(test_predict[:50], label='predict') plt.legend() plt.title('Test set') plt.show()如何用返回序列修改这段程序

如果你想使用返回序列的LSTM来修改这段程序,需要在LSTM层中设置return_sequences参数为True,并修改Dense层的输出单元数。下面是修改后的代码: import numpy as np import matplotlib.pyplot as plt from keras.layers import Dense, LSTM, Dropout from keras.models import Sequential # 加载数据 X = np.load("X_od.npy") Y = np.load("Y_od.npy") # 数据归一化 max = np.max(X) X = X / max Y = Y / max # 划分训练集、验证集、测试集 train_x = X[:1000] train_y = Y[:1000] val_x = X[1000:1150] val_y = Y[1000:1150] test_x = X[1150:] test_y = Y # 构建LSTM模型 model = Sequential() model.add(LSTM(units=64, input_shape=(5, 109), return_sequences=True)) model.add(Dropout(0.2)) model.add(Dense(units=1, activation='linear')) model.summary() # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False) # 评估模型 test_loss = model.evaluate(test_x, test_y) print('Test loss:', test_loss) # 模型预测 train_predict = model.predict(train_x) val_predict = model.predict(val_x) test_predict = model.predict(test_x) # 预测结果可视化 plt.figure(figsize=(20, 8)) plt.plot(train_y[-100:], label='true') plt.plot(train_predict[-100:], label='predict') plt.legend() plt.title('Training set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(val_y[-50:], label='true') plt.plot(val_predict[-50:], label='predict') plt.legend() plt.title('Validation set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(test_y[:50], label='true') plt.plot(test_predict[:50], label='predict') plt.legend() plt.title('Test set') plt.show() 需要注意的是,由于返回序列的LSTM层输出的是一个序列,所以在Dense层中输出单元数应该为1而不是109。

import numpy as np import matplotlib.pyplot as plt from keras.layers import Dense,LSTM,Dropout from keras.models import Sequential # 加载数据 X = np.load("X_od.npy") Y = np.load("Y_od.npy") # 数据归一化 max = np.max(X) X = X / max Y = Y / max # 划分训练集、验证集、测试集 train_x = X[:1000] train_y = Y[:1000] val_x = X[1000:1150] val_y = Y[1000:1150] test_x = X[1150:] test_y = Y # 构建LSTM模型 model = Sequential() model.add(LSTM(units=109, input_shape=(5,109),return_sequences=True)) model.add(Dropout(0.2)) model.add(Dense(units=1, activation='linear')) # 原为Dense(units=109) model.summary() # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False) # 评估模型 test_loss = model.evaluate(test_x, test_y) print('Test loss:', test_loss) # 模型预测 train_predict = model.predict(train_x) val_predict = model.predict(val_x) test_predict = model.predict(test_x) # 预测结果可视化 plt.figure(figsize=(20, 8)) plt.plot(train_y[-100:], label='true') plt.plot(train_predict[-100:], label='predict') plt.legend() plt.title('Training set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(val_y[-50:], label='true') plt.plot(val_predict[-50:], label='predict') plt.legend() plt.title('Validation set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(test_y[:50], label='true') plt.plot(test_predict[:50], label='predict') plt.legend() plt.title('Test set') plt.show()如何修改这一代码的数据维度让其可以正常运行

你这里的代码有误,tf.keras.models.save_model()是用于保存Keras模型的方法,并不是用于创建Saver对象的。如果你想要保存TensorFlow模型,需要使用tf.train.Saver()方法。 下面是一个示例代码,它可以创建一个Saver对象并将模型保存到指定路径: import tensorflow as tf # 定义模型 x = tf.placeholder(tf.float32, [None, 784], name='x') y = tf.placeholder(tf.float32, [None, 10], name='y') W = tf.Variable(tf.zeros([784, 10]), name='W') b = tf.Variable(tf.zeros([10]), name='b') logits = tf.matmul(x, W) + b loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits)) # 定义优化器和训练操作 train_op = tf.train.AdamOptimizer().minimize(loss) # 创建Saver对象 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # 训练模型 for i in range(1000): batch_xs, batch_ys = ... sess.run(train_op, feed_dict={x: batch_xs, y: batch_ys}) if i % 100 == 0: print('Step {}: Loss = {}'.format(i, sess.run(loss, feed_dict={x: batch_xs, y: batch_ys}))) # 保存模型 saver.save(sess, 'model/model.ckpt') 在上面的代码中,我们首先定义了一个简单的模型,并创建了一个Saver对象。在训练过程中,我们使用train_op操作来更新模型参数,并定期打印损失函数的值。最后,我们使用Saver对象将模型保存到指定路径中。 如果你希望使用Keras API来定义模型,可以使用tf.keras.models.Model()来创建模型,然后使用tf.train.Saver()来保存模型。下面是一个示例代码: import tensorflow as tf # 定义模型 inputs = tf.keras.Input(shape=(784,), name='inputs') x = tf.keras.layers.Dense(64, activation='relu')(inputs) outputs = tf.keras.layers.Dense(10, activation='softmax')(x) model = tf.keras.models.Model(inputs=inputs, outputs=outputs) # 定义优化器和训练操作 model.compile(optimizer=tf.train.AdamOptimizer(), loss='categorical_crossentropy', metrics=['accuracy']) # 创建Saver对象 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # 训练模型 model.fit(x_train, y_train, epochs=10, batch_size=32) # 保存模型 saver.save(sess, 'model/model.ckpt') 在上面的代码中,我们使用Keras API来定义了一个简单的模型,并使用model.compile()方法来定义优化器和损失函数。在训练过程中,我们使用model.fit()方法来更新模型参数。最后,我们使用Saver对象将模型保存到指定路径中。

最新推荐

信息报送系统实施技术方案.docx

信息报送系统实施技术方案.docx

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

centos7安装nedit

### 回答1: 你可以按照以下步骤在 CentOS 7 上安装 nedit: 1. 打开终端并切换到 root 用户。 2. 运行以下命令安装 EPEL 存储库: ``` yum install epel-release ``` 3. 运行以下命令安装 nedit: ``` yum install nedit ``` 4. 安装完成后,你可以在终端中运行以下命令启动 nedit: ``` nedit ``` 如果你想打开一个文件,可以使用以下命令: ``` nedit /path/to/file

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�

软件如果要进行优化要做哪些工作

### 回答1: 要进行软件优化,可以从以下几个方面入手: 1. 代码优化:对代码进行精简、去除冗余代码、重构代码结构、提高代码的可读性和复用性等,以提高代码的执行效率和可维护性。 2. 数据结构和算法优化:选择合适的数据结构和算法,尽可能减少算法的时间复杂度和空间复杂度,以提高程序的执行效率。 3. 编译优化:通过调整编译器参数、使用优化编译器等手段对程序进行优化,以提高程序的运行效率。 4. 并行处理:将程序分解成多个独立的部分,通过多线程、多进程、分布式等方式进行并行处理,以提高程序的执行效率和吞吐量。 5. 内存管理:对程序进行内存管理,减少内存的分配和释放操作,避免内存泄漏

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。

自适应学习率的矩阵近似协同过滤算法(AdaError)

首页>外文书>人文>心理励志> User Modeling,WWW 2018,2018年4月23日至27日,法741AdaError:一种自适应学习率的矩阵近似协同过滤李东升IBM中国研究院中国上海ldsli@cn.ibm.com上海复旦大学,中国lutun@fudan.edu.cn摘要朝晨IBM中国研究院中国上海cchao@cn.ibm.com李尚科罗拉多大学博尔德分校美国科罗拉多州博尔德li. colorado.edu秦律科罗拉多大学博尔德分校美国科罗拉多州博尔德www.example.comqin.lv @colorado.edu复旦大学上海,中国ninggu@fudan.edu.cnACM参考格式:HansuGuSeagateTechnology美国科罗拉多guhansu@gmail.comStephen M.朱IBM研究院-中国上海,中国schu@cn.ibm.com诸如随机梯度下降的基于梯度的学习方法被广泛用于基于矩阵近似的协同过滤算法中,以基于观察到的用户项目评级来训练推荐模型。一个主要的困难 在现有的基于梯度的学习方法中,确定适当的学习率是一个重要的问题,因为如果�

lightgbm分类算法matlab实现

### 回答1: 我可以回答这个问题。LightGBM 是一种基于决策树的梯度提升框架,可以用于分类和回归问题。在 MATLAB 中,可以使用 LightGBM 的 MATLAB 接口来实现分类算法。具体实现方法可以参考 LightGBM 官方文档和 MATLAB 接口文档。 ### 回答2: LightGBM 是一个基于梯度提升决策树(Gradient Boosting Decision Tree)的高效、快速的机器学习算法,被广泛应用于分类问题。然而,目前似乎还没有官方提供的 MATLAB 版本的 LightGBM 实现。 如果你想在 MATLAB 中使用 LightGBM,可以考