写一段N32L406芯片的串口驱动程序
时间: 2023-03-06 12:08:53 浏览: 217
N32L406芯片的串口驱动程序可以使用以下代码实现:#include <N32L406.h> void UART_Init(void)
{
// 初始化串口,设置波特率为9600
UART_Open(UART0, 9600);
} void main(void)
{
UART_Init(); // 初始化串口0 while(1)
{
// 从串口获取数据
u8 dat = UART_GetChar(UART0);
// 将数据发送回串口
UART_PutChar(UART0, dat);
}
}
相关问题
用STM32CubeIDE,将芯片STM32F103RCT6进行CubeMX图形配置,用HAL库写一段代码让L298N电机驱动模块控制JGB520电机进行旋转 使用电机的编码器并使用串口将速度显示在电脑上 PA9,PA10作为串口通信使用
首先,需要在CubeMX中进行如下配置:
1. 在Pinout选项卡中,将PA9和PA10配置为USART1的TX和RX引脚。
2. 在Configuration选项卡中,选择USART1,并将波特率设置为115200。
3. 在Configuration选项卡中,选择TIM2,并启用Channel1和Channel2的编码器模式。
4. 在Configuration选项卡中,选择GPIO和TIM4,将TIM4的Channel1和Channel2配置为PWM输出,并将对应的GPIO引脚配置为输出。
然后,生成代码并在main.c文件中添加以下代码:
```c
#include "main.h"
#include "stm32f1xx_hal.h"
#include "stdio.h"
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM4_Init(void);
static void MX_USART1_UART_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_TIM2_Init();
MX_TIM4_Init();
MX_USART1_UART_Init();
HAL_TIM_Encoder_Start(&htim2, TIM_CHANNEL_ALL);
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_2);
uint32_t counter = 0;
uint32_t last_counter = 0;
uint32_t frequency = 0;
uint32_t speed = 0;
char buffer[32];
while (1)
{
counter = TIM2->CNT;
if (counter != last_counter)
{
frequency = HAL_RCC_GetHCLKFreq() / (htim2.Init.Prescaler + 1) / (htim2.Init.Period + 1);
speed = (frequency * 60) / 200 / 7;
sprintf(buffer, "Speed: %d RPM\r\n", speed);
HAL_UART_Transmit(&huart1, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}
last_counter = counter;
TIM4->CCR1 = 1000;
TIM4->CCR2 = 0;
HAL_Delay(1000);
TIM4->CCR1 = 0;
TIM4->CCR2 = 1000;
HAL_Delay(1000);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM2_Init(void)
{
TIM_Encoder_InitTypeDef sConfig = {0};
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sConfig.EncoderMode = TIM_ENCODERMODE_TI12;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim2, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM4_Init(void)
{
TIM_OC_InitTypeDef sConfigOC = {0};
htim4.Instance = TIM4;
htim4.Init.Prescaler = 71;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 9999;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET);
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_NVIC_SetPriority(TIM2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
}
void TIM2_IRQHandler(void)
{
HAL_TIM_IRQHandler(&htim2);
}
void USART1_IRQHandler(void)
{
HAL_UART_IRQHandler(&huart1);
}
void Error_Handler(void)
{
while (1)
{
}
}
```
然后编译并下载程序到STM32F103RCT6芯片中,将L298N电机驱动模块接到PA8和PA9引脚上,将JGB520电机接到L298N电机驱动模块上,并将电机的编码器接到PA0和PA1引脚上。
最后,在电脑上打开串口终端程序,选择串口号和波特率为115200,即可看到电机的转速信息。
bldc驱动芯片三相
### BLDC驱动芯片三相电机控制方案
#### 一、硬件选型与配置
对于BLDC电机的三相控制,选择合适的驱动芯片至关重要。DRV8302作为一款高性能的预驱IC,在配合外部MOSFET的情况下可以有效驱动大功率BLDC电机[^1]。而L6234则是一款集成了六个N沟道MOSFET栅极驱动器的专用集成电路,适用于较低功率的应用场景,并且内部已经包含了必要的逻辑用于执行基本的换向操作[^3]。
#### 二、电气连接方式
考虑到效率和可靠性,通常采用星形(Y)接法而非三角形(Δ),因为这样可以在保持相同转矩的同时降低每相绕组上的电压应力。当实施这种拓扑结构时,每次仅激活两个相邻端子之间的路径,从而形成连续旋转磁场以推动转子前进[^4]。
#### 三、软件编程要点
利用Arduino平台开发针对特定型号BLDC马达控制器程序的过程中,需特别留意以下几个方面:
- **初始化设置**:定义PWM信号输出引脚以及霍尔传感器输入接口;设定初始占空比水平以便启动过程平稳过渡。
- **换向序列生成**:遵循标准六状态模式(即所谓的“梯形波”调制),通过改变各相通电次序来完成完整的机械周期运动[^2]。
- **反馈机制构建**:引入增量式编码盘或者其他形式的位置传感装置,使得闭环调节成为可能,进而提升动态响应特性并改善稳态误差表现。
- **异常处理策略**:建立完善的错误捕捉流程,比如监测母线电压波动范围、判断是否存在堵转现象等,一旦发现潜在风险立即触发相应的防护动作。
```cpp
// 示例代码片段展示如何创建基础框架
const int hallA = A0; // 定义霍尔效应元件关联模拟通道编号
const int hallB = A1;
const int hallC = A2;
void setup() {
pinMode(hallA, INPUT); // 设置为读取模式
pinMode(hallB, INPUT);
pinMode(hallC, INPUT);
analogWriteFreq(20000); // 提升默认PWM频率至更适宜值
Serial.begin(9600); // 开启串口通信功能便于调试期间查看数据流
}
void loop() {
static uint8_t lastState = 7; // 初始化变量存储前一刻的状态信息
const auto currentState = (digitalRead(hallA)<<2)|(digitalRead(hallB)<<1)|digitalRead(hallC);
if(currentState != lastState){
updateCommutationSequence(currentState); // 更新当前应处于哪个换向阶段
lastState = currentState;
}
}
```
阅读全文
相关推荐














