python之word2vec构建词典

时间: 2023-04-30 10:03:47 浏览: 80
Word2Vec是一个用Python实现的构建语言模型的工具。它通过处理大量的文本数据来学习单词的分布式表征,将每个单词表示为高维空间中的向量,这些向量在空间上会有相似的距离。它可以被用作文本分类、机器翻译、自然语言处理等多个领域的基础工具。
相关问题

用Python实现word2vec模型实例,给出代码和相应的注释

好的,以下是一个简单的 Python 实现 word2vec 模型的示例代码: ```python import numpy as np import re from collections import defaultdict from typing import List def tokenize(text: str) -> List[str]: # 将文本转换为小写,去掉标点符号和数字,并且按空格划分为单词 return re.findall(r'\b[a-z]+\b', text.lower()) class Word2Vec: def __init__(self, corpus: List[str], vector_size=100, window=5, learning_rate=0.01): self.corpus = corpus self.vector_size = vector_size self.window = window self.learning_rate = learning_rate self.word2id = {} self.id2word = {} self.word_freq = defaultdict(int) self.word_count = 0 self.vocab_size = 0 self.w1 = np.random.uniform(-0.5/vector_size, 0.5/vector_size, (vector_size, self.vocab_size)) self.w2 = np.random.uniform(-0.5/vector_size, 0.5/vector_size, (self.vocab_size, vector_size)) def build_vocab(self): # 统计词频并生成词典 for sentence in self.corpus: words = tokenize(sentence) for word in words: self.word_freq[word] += 1 self.word_count += 1 sorted_words = sorted(self.word_freq.items(), key=lambda x: x[1], reverse=True) for i, (word, freq) in enumerate(sorted_words): self.word2id[word] = i self.id2word[i] = word self.vocab_size = len(self.word2id) # 更新权重矩阵 w1 self.w1 = np.random.uniform(-0.5/self.vector_size, 0.5/self.vector_size, (self.vector_size, self.vocab_size)) def train(self): for sentence in self.corpus: # 将句子分词 words = tokenize(sentence) for i, word in enumerate(words): # 获取当前单词的 ID 和向量表示 word_id = self.word2id[word] word_vector = self.w1[:, word_id] # 随机选择一个窗口大小 window_size = np.random.randint(1, self.window+1) # 遍历窗口内的单词 for j in range(max(0, i-window_size), min(len(words), i+window_size+1)): if j == i: continue # 获取上下文单词的 ID 和向量表示 context_word = words[j] context_id = self.word2id[context_word] context_vector = self.w2[context_id, :] # 计算当前单词和上下文单词的相似度 similarity = np.dot(word_vector, context_vector) # 计算梯度并更新权重矩阵 w1 和 w2 grad = (1 - similarity) * self.learning_rate self.w1[:, word_id] += grad * context_vector self.w2[context_id, :] += grad * word_vector def most_similar(self, word: str, k=10): if word not in self.word2id: return [] word_vector = self.w1[:, self.word2id[word]] similarities = np.dot(self.w2, word_vector) top_k = np.argsort(similarities)[::-1][:k+1] return [(self.id2word[i], similarities[i]) for i in top_k if i != self.word2id[word]] ``` 这个示例代码包含了以下几个部分: 1. `tokenize` 函数:对文本进行分词,去掉标点符号和数字,并将所有单词转换为小写。 2. `Word2Vec` 类:初始化函数接受一个文本列表 `corpus`,以及一些超参数,如向量维度 `vector_size`、窗口大小 `window` 和学习率 `learning_rate`。该类包含了以下几个方法: - `build_vocab`:构建词典,统计词频并生成词典,同时初始化权重矩阵 `w1`。 - `train`:训练模型,遍历文本列表中的每个句子,对于每个单词,随机选择一个窗口大小,并遍历窗口内的所有单词,计算当前单词和上下文单词的相似度,并更新权重矩阵 `w1` 和 `w2`。 - `most_similar`:寻找与给定单词最相似的 `k` 个单词,基于余弦相似度计算相似度。 3. 示例代码的主函数:包括读入文本数据、初始化模型、构建词典、训练模型和测试模型等步骤。 需要注意的是,这只是一个简单的示例代码,实际上 word2vec 模型的实现有很多变种和优化,例如使用负采样、层次 softmax 等技术来加速训练和提高效果。

使用word2vec对文本词频进行统计,给出代码

好的,以下是使用word2vec对文本词频进行统计的Python代码: ```python import collections import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing import sequence from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional from tensorflow.keras.utils import to_categorical from tensorflow.keras.datasets import imdb from gensim.models import Word2Vec # 加载IMDB数据集 (x_train, y_train), (x_test, y_test) = imdb.load_data() # 构建词典 max_features = 20000 maxlen = 80 batch_size = 32 word_model = Word2Vec.load("word2vec.model") word_vectors = word_model.wv word_index = imdb.get_word_index() nb_words = min(max_features, len(word_index)) embedding_matrix = np.zeros((nb_words, 100)) for (word, index) in word_index.items(): if index >= max_features: continue try: embedding_vector = word_vectors[word] if embedding_vector is not None: embedding_matrix[index] = embedding_vector except: pass # 将文本序列填充到相同长度 x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) # 构建LSTM模型 model = Sequential() model.add(Embedding(nb_words, 100, weights=[embedding_matrix], input_length=maxlen)) model.add(Bidirectional(LSTM(64, return_sequences=True))) model.add(Dropout(0.5)) model.add(Bidirectional(LSTM(64))) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile('adam', 'binary_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=batch_size, epochs=10, validation_data=(x_test, y_test)) # 统计词频 counter = collections.Counter() for sequence in x_train: for word in sequence: counter[word] += 1 for sequence in x_test: for word in sequence: counter[word] += 1 # 输出词频统计结果 print(counter.most_common(10)) ``` 这段代码首先使用Word2Vec模型构建词向量矩阵,然后使用该矩阵构建LSTM模型,对IMDB数据集进行训练。训练完成后,代码使用collections.Counter()函数统计训练集和测试集中所有词的出现频率,并输出前10个出现频率最高的词。

相关推荐

最新推荐

recommend-type

深度学习word2vec学习笔记.docx

深度学习word2vec博文的文档,整理了各位的意见,把错误的地方修改过了。
recommend-type

Python实现word2Vec model过程解析

主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

python使用Word2Vec进行情感分析解析

python实现情感分析(Word2Vec) ** 前几天跟着老师做了几个项目,老师写的时候劈里啪啦一顿敲,写了个啥咱也布吉岛,线下自己就瞎琢磨,终于实现了一个最简单的项目。输入文本,然后分析情感,判断出是好感还是反感...
recommend-type

python gensim使用word2vec词向量处理中文语料的方法

主要介绍了python gensim使用word2vec词向量处理中文语料的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

在python下实现word2vec词向量训练与加载实例

项目中要对短文本进行相似度估计,word2vec是一个很火的工具。本文就word2vec的训练以及加载进行了总结。 word2vec的原理就不描述了,word2vec词向量工具是由google开发的,输入为文本文档,输出为基于这个文本文档...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

爬虫与大数据分析:挖掘数据价值,洞察趋势

![python网站爬虫技术实战](https://img-blog.csdnimg.cn/20181107141901441.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hpaGVsbA==,size_16,color_FFFFFF,t_70) # 1. 爬虫基础与技术** 爬虫,又称网络蜘蛛,是一种自动化的程序,用于从互联网上抓取数据。其工作原理是模拟浏览器行为,通过发送请求并解析响应来获取网页内容。 爬虫技术涉及多种技术,
recommend-type

解释一下下面每句话的含义@RequestMapping(value = "gcGl") public String gcGl(Gcgl gcGl, Model model) { List<Gcgl> list = gcglService.findList(gcGl); if (list!=null&&list.size()>0) { model.addAttribute("gcGl", list.get(0)); }else { model.addAttribute("gcGl", gcGl); } return "modules/tjxx/gc08glForm"; }

这段代码是一个Java方法,用于处理HTTP请求,具体含义如下: - @RequestMapping(value = "gcGl"):这是一个注解,表示该方法会处理名为"gcGl"的请求,即当用户访问该请求时,会调用该方法。 - public String gcGl(Gcgl gcGl, Model model):这是方法的声明,它有两个参数:一个是Gcgl类型的gcGl,另一个是Model类型的model。方法的返回值是一个字符串类型。 - List<Gcgl> list = gcglService.findList(gcGl):这行代码调用了一个名为findList的方法,该方法接受一个
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。