基于DCGAN的MNIST手写数字生成代码

时间: 2024-01-15 16:12:35 浏览: 24
以下是基于DCGAN的MNIST手写数字生成的Python代码示例: ```python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import numpy as np # 定义生成器网络 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(100, 128) self.fc2 = nn.Linear(128, 256) self.fc3 = nn.Linear(256, 512) self.fc4 = nn.Linear(512, 784) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.relu(self.fc3(x)) x = self.tanh(self.fc4(x)) return x # 定义判别器网络 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.fc1 = nn.Linear(784, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x # 准备数据集 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) # 初始化生成器和判别器 G = Generator() D = Discriminator() # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer_G = optim.Adam(G.parameters(), lr=0.0002, betas=(0.5, 0.999)) optimizer_D = optim.Adam(D.parameters(), lr=0.0002, betas=(0.5, 0.999)) # 训练模型 for epoch in range(50): for i, data in enumerate(trainloader, 0): # 更新判别器 D.zero_grad() real_images = data[0].view(-1, 784) real_labels = torch.ones(real_images.size()[0], 1) fake_labels = torch.zeros(real_images.size()[0], 1) # 训练鉴别器以识别真实图片 real_output = D(real_images) real_loss = criterion(real_output, real_labels) # 训练鉴别器以识别生成的图片 noise = torch.randn(real_images.size()[0], 100) fake_images = G(noise) fake_output = D(fake_images.detach()) fake_loss = criterion(fake_output, fake_labels) # 更新判别器的权重 d_loss = real_loss + fake_loss d_loss.backward() optimizer_D.step() # 更新生成器 G.zero_grad() noise = torch.randn(real_images.size()[0], 100) fake_images = G(noise) fake_output = D(fake_images) g_loss = criterion(fake_output, real_labels) g_loss.backward() optimizer_G.step() # 定期生成一些图像来检查生成器的效果 if epoch % 5 == 0: noise = torch.randn(25, 100) generated_images = G(noise).detach().numpy() generated_images = np.reshape(generated_images, (25, 28, 28)) generated_images = (generated_images + 1) / 2 torchvision.utils.save_image(torch.from_numpy(generated_images), 'generated_images_{}.png'.format(epoch)) print('Finished Training') ``` 在训练过程中,生成器会不断生成手写数字图像,判别器会不断判断这些图像是真实的MNIST图像还是生成器生成的假图像。通过不断调整生成器和判别器的权重,生成器可以产生逼真的手写数字图像。最终,我们可以使用生成器来生成新的手写数字图像。

相关推荐

最新推荐

recommend-type

基于TensorFlow的CNN实现Mnist手写数字识别

本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下 一、CNN模型结构 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层...
recommend-type

Python利用逻辑回归模型解决MNIST手写数字识别问题详解

主要介绍了Python利用逻辑回归模型解决MNIST手写数字识别问题,结合实例形式详细分析了Python MNIST手写识别问题原理及逻辑回归模型解决MNIST手写识别问题相关操作技巧,需要的朋友可以参考下
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下
recommend-type

手写数字识别:实验报告

AIstudio手写数字识别项目的实验报告,报告中有代码链接。文档包括: 1.数据预处理 2.数据加载 3.网络结构尝试:简单的多层感知器、卷积神经网络LeNet-5、循环神经网络RNN、Vgg16 4.损失函数:平方损失函数、交叉...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。