df_concat_x = pd.DataFrame() df_concat_y=pd.DataFrame() df_concat_x1=pd.DataFrame() df_concat_y1=pd.DataFrame()如何代码更简洁
你可以使用列表来存储要合并的数据框,然后使用 pandas 的 concat 函数来合并这些数据框,示例代码如下:
df_list = [df_concat_x, df_concat_y, df_concat_x1, df_concat_y1] df_concat = pd.concat(df_list)
这样就能更简洁地合并多个数据框了。
alphas = np.logspace(-10,10,20) coef = pd.DataFrame() for alpha in alphas: ridge_clf = Ridge(alpha=alpha) ridge_clf.fit(X_train[features_without_ones],y_train) df = pd.DataFrame([ridge_clf.coef_],columns=X_train[features_without_ones].columns) df['alpha']=alpha coef = pd.concat([coef, df], ignore_index=True) coef.round(decimals=2) alphas = np.logspace(-10,10,20) coef = pd.DataFrame() for alpha in alphas: ridge_clf = Ridge(alpha=alpha) ridge_clf.fit(X_train[features_without_ones],y_train) df = pd.DataFrame([ridge_clf.coef_],columns=X_train[features_without_ones].columns) df['alpha']=alpha coef = pd.concat([coef, df], ignore_index=True) coef.round(decimals=2)
这段代码是在利用岭回归(Ridge Regression)来进行特征选择。其中,np.logspace(-10,10,20)是在生成20个对数尺度的alpha值,ridge_clf = Ridge(alpha=alpha)是定义岭回归模型,ridge_clf.fit(X_train[features_without_ones],y_train)是利用训练集进行模型训练,df = pd.DataFrame([ridge_clf.coef_],columns=X_train[features_without_ones].columns)是将岭回归模型的系数转换为数据框格式,df['alpha']=alpha是为每个alpha值添加一列,coef = pd.concat([coef, df], ignore_index=True)是将所有alpha值对应的系数数据框进行合并,最后用coef.round(decimals=2)将结果保留两位小数。
df_all = pd.DataFrame() df_all = pd.concat([df_all, df_one], axis='columns')
这段代码的作用是将一个名为"df_one"的DataFrame与名为"df_all"的空DataFrame按列合并,并将结果存储在"df_all"中。其中"axis='columns'"表示按列合并,即将df_one的列添加到df_all的列后面。最终结果是一个包含df_one的所有列的DataFrame,如果df_all原本就有列,则新的列将添加到现有列的后面。
相关推荐
















