使用unet网络分割一个文件夹下的2D512*512的肾脏CT图片的model.py代码,不要使用tensorflow
时间: 2024-05-16 18:14:38 浏览: 193
好的,以下是使用PyTorch实现UNet网络对肾脏CT图像进行分割的model.py代码:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, in_channels=1, out_channels=1, features=[64, 128, 256, 512]):
super(UNet, self).__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part of UNet
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# Up part of UNet
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2))
self.ups.append(DoubleConv(feature*2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
# Down part of UNet
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1]
# Up part of UNet
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = nn.functional.interpolate(x, size=skip_connection.shape[2:], mode='bilinear', align_corners=True)
concat_skip = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](concat_skip)
return self.final_conv(x)
```
这里定义了一个双卷积块`DoubleConv`和一个UNet网络`UNet`。其中,`DoubleConv`由两个卷积层和批归一化、ReLU激活函数组成,用于构建UNet中的下采样和上采样部分的卷积块。`UNet`定义了UNet的整个结构,包括下采样、上采样、瓶颈和最终卷积层。
在`UNet`中,我们定义了一个下采样部分和一个上采样部分。下采样部分由多个双卷积块和最大池化层组成,用于提取特征和降低分辨率。上采样部分由多个转置卷积层和双卷积块组成,用于恢复分辨率和进行特征融合。在上采样过程中,我们通过将下采样部分的特征与上采样部分的特征进行拼接,来进行特征融合。
最后,我们通过一个1x1的卷积层将特征图压缩到指定的输出通道数。
阅读全文