给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C,用回溯算法求解该问题

时间: 2023-10-03 17:07:46 浏览: 62
好的,这个问题是经典的背包问题,可以使用回溯算法进行求解。下面是一种可能的实现方式: 1. 定义一个全局变量max_value,用于记录最大价值。 2. 编写一个backtrack函数,函数参数为当前所在的层数、当前已选物品的总重量和总价值。在函数内部,首先判断当前已选物品的总重量是否超过了背包容量C,如果超过了,则直接返回。如果未超过,则判断当前的总价值是否大于max_value,如果是,则更新max_value。 3. 在函数内部,使用一个循环遍历所有剩余的物品,对于每个物品,先判断是否已经选过了,如果已经选过,则跳过,否则可以选择该物品,更新当前已选物品的总重量和总价值,递归调用backtrack函数进入下一层,然后回溯还原当前状态,继续循环。 4. 在最外层调用backtrack函数,传入初始参数0、0、0,即从第0层开始选择,当前已选物品的总重量和总价值都为0。 这样就可以求解出背包问题的最大价值了。需要注意的是,这种实现方式时间复杂度较高,对于较大的n和C可能会超时,因此可以考虑优化算法,例如使用动态规划等。
相关问题

用c语言回溯算法解决给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

好的,我可以为你介绍一下用c语言回溯算法解决给定n种物品和一背包的问题。 首先,我们需要定义一个数组来表示每个物品的重量和价值,以及一个数组来表示每个物品是否已经被选择放入背包中。 接下来,我们可以编写一个递归函数来实现回溯算法,其大致思路如下: 1. 如果背包已经放满或者已经考虑完了所有物品,则计算当前放入背包中物品的总价值,并与已经找到的最大价值进行比较,如果更大则更新最大价值。 2. 否则,对于每个物品,依次尝试将它放入背包中或不放入背包中,然后递归调用函数,进行下一步的选择。 3. 在递归函数中,需要记录当前背包中物品的总重量,以及已经放入背包中的物品。 4. 在每次递归调用结束后,需要将背包中的物品取出,恢复到递归前的状态。 以下是一份用c语言实现回溯算法解决背包问题的示例代码: ```c #include <stdio.h> #define MAX_N 1000 int n, C; int w[MAX_N], v[MAX_N]; int selected[MAX_N]; int max_value = 0; void backtrack(int weight, int value, int index) { if (index == n) { if (value > max_value) { max_value = value; } return; } // 不选当前物品 backtrack(weight, value, index + 1); // 选当前物品 if (weight + w[index] <= C) { selected[index] = 1; backtrack(weight + w[index], value + v[index], index + 1); selected[index] = 0; } } int main() { scanf("%d %d", &n, &C); for (int i = 0; i < n; i++) { scanf("%d %d", &w[i], &v[i]); } backtrack(0, 0, 0); printf("%d\n", max_value); return 0; } ``` 在上面的代码中,我们定义了一个backtrack函数,它的参数weight表示当前背包中物品的总重量,value表示当前背包中物品的总价值,index表示当前已经考虑过的物品的编号。在每次递归调用结束后,我们需要将放入背包中的物品取出,以便回溯到上一步。 最终,我们可以通过递归调用backtrack函数,来求解背包问题并得到最大价值。

给定n种物品和一个背包,物品i的重量是wi,其价值为vi,问如何选择装入背包的物品,使

以下是两种解决背包问题的算法: 1. 0/1背包问题 0/1背包问题是指每种物品仅有一件,可以选择放或不放。用动态规划求解时,设v[i][j]表示前i件物品放入容量为j的背包可以获得的最大价值有以下状态转移方程: v[i][j] = max{v[i-1][j], v[i-1][j-w[i]] + v[i]} (j>=w[i]) 其中,w[i]和v[i]分别表示第i件物品的重量和价值。 2. 完全背包问题 完全背包问题是指每种物品有无限件,可以选择放或不放。同样用动态规划求解时,设v[i][j]表示前i件物品放入容量为j的背包可以获得的最大价值,则有以下状态转移方程: v[i][j] = max{v[i-1][j-k*w[i]] + k*v[i]} (0<=k*w[i]<=j) 其中,w[i]和v[i]仍然表示第i件物品的重量和价值。

相关推荐

zip
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

最新推荐

recommend-type

遗传算法求解01背包问题——问题分析

给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。选择合适的物品装入背包,使得背包中装入的物品的总价值最大。注意的一点是,背包内的物品的重量之和不能大于背包的容量C。在选择装入背包的...
recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。