房价预测python代码
时间: 2023-05-14 12:00:29 浏览: 175
房价预测是房地产领域非常重要的一个问题,利用机器学习算法预测房价已经成为了一个热门的研究领域。Python是一种流行的编程语言,也是机器学习领域中最常用的语言之一。因此,Python代码被广泛应用于房价预测模型的开发。
编写房价预测Python代码,首先需要准备房价数据集。通常,使用的数据集包含房屋的不同特征如位置、平方英尺、卧室数、浴室数、建筑年份等,以及房价值作为标签。在这个模型中,我们将使用线性回归算法来建立模型并预测房价。
下面是一个简单的房价预测Python代码案例:
```
# 导入必要的库
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 读取数据集
data = pd.read_csv('housing.csv')
# 特征选择
X = data[['sqft', 'bedrooms', 'bathrooms', 'age']]
y = data['price']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 建立线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
# 进行预测
y_pred = model.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print('Mean squared error: ', mse)
```
在这个代码案例中,我们首先导入必要的库,然后使用pandas库读取housing.csv数据集。接下来,我们选择了四个特征(sqft, bedrooms, bathrooms, age)来作为X特征矩阵,从数据集里取出房价值作为y标签。然后,我们使用train_test_split方法将数据集划分成训练集和测试集,比例为80:20。接着,我们建立了一个线性回归模型,并用训练集训练模型。最终,我们用测试集进行预测,并用mean_squared_error方法计算均方误差。
以上面的代码为例,通过加入更多的特征、采用其他的机器学习算法等,可以进一步提升房价预测模型的准确性。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)