多核k聚类算法中最优基核系数和聚类划分矩阵的搜索是什么
时间: 2023-07-17 21:48:34 浏览: 177
矩阵诱导正则化的多核k均值聚类
多核k聚类算法中最优基核系数和聚类划分矩阵的搜索是一个优化问题,需要通过迭代的方法寻找最优解。具体来说,可以采用交替最小化算法(alternating minimization)来求解,该算法的基本思想是将原问题分解为若干个子问题,分别求解这些子问题,然后将它们的解组合起来得到原问题的解。
在多核k聚类算法中,最优基核系数和聚类划分矩阵的搜索可以分为以下几个步骤:
1. 随机初始化基核系数和聚类划分矩阵;
2. 固定聚类划分矩阵,通过交替最小化算法求解基核系数的最优解;
3. 固定基核系数,通过交替最小化算法求解聚类划分矩阵的最优解;
4. 重复步骤2和3,直到收敛为止。
在求解基核系数和聚类划分矩阵的最优解时,可以采用不同的优化方法,如梯度下降、牛顿法等。最终得到的最优解可以用于进行聚类或分类等任务。
阅读全文