queryWrapper.orderByDesc("qmrylx"); AdminInspectionResultDisposalInfoResultConfirmReq rep = BeanUtil.convertBean2Bean(adminInspectionResultDisposalInfo, AdminInspectionResultDisposalInfoResultConfirmReq.class); 解读

时间: 2024-04-03 08:33:13 浏览: 40
这段代码的作用是在查询条件`queryWrapper`中按照`qmrylx`字段进行降序排列。`BeanUtil.convertBean2Bean()`是一个Java Bean之间相互转换的工具方法,这里将`adminInspectionResultDisposalInfo`对象转换为`AdminInspectionResultDisposalInfoResultConfirmReq`对象,并将转换后的结果赋值给变量`rep`。其中,`AdminInspectionResultDisposalInfoResultConfirmReq`是一个数据传输对象(DTO),用于在不同层之间传输数据。
相关问题

[a1, b1] = meshgrid(1:jx, 1:jy); JSX = a1 .* gj - r0; %计算点x坐标 JSY = b1 .* gj; %计算点y坐标 [j, k] = meshgrid(1:nj, 1:nj); z = (j-1) .* dz .* (j~=nj) + (nj-1) .* dz .* (j==nj); a = (2.*k-3) .* dz .* 0.5 .* (k~=nj) + 0 .* (k==1) + (H-dz/2) .* (k==nj); b = (2.*k-1) .* dz .* 0.5 .* (k~=1) + dz/2 .* (k==1) + H .* (k==nj); for ii=1:zks %钻孔数 SLX=ZK(ii,1); SLY=ZK(ii,2); rr=sqrt((SLX-JSX).^2+(SLY-JSY).^2); Xt=JSX-SLX; %计算点到钻孔的x距离 end将for循环部分广播运算

可以使用矩阵运算来代替for循环,从而实现矩阵化计算。具体实现如下: ``` SLX = ZK(:, 1); % 取出所有钻孔的x坐标 SLY = ZK(:, 2); % 取出所有钻孔的y坐标 Xt = bsxfun(@minus, JSX, SLX'); % 计算点到钻孔的x距离 Yt = bsxfun(@minus, JSY, SLY'); % 计算点到钻孔的y距离 rr = sqrt(Xt.^2 + Yt.^2); % 计算点到钻孔的距离 JSX_rep = repmat(JSX, zks, 1); % 将点的x坐标复制zks遍 JSY_rep = repmat(JSY, zks, 1); % 将点的y坐标复制zks遍 SLX_rep = repmat(SLX, 1, jx*jy); % 将钻孔的x坐标复制jx*jy遍 SLY_rep = repmat(SLY, 1, jx*jy); % 将钻孔的y坐标复制jx*jy遍 z_rep = repmat(z(:)', jx*jy, 1); % 将z向量复制jx*jy遍 a_rep = repmat(a(:)', jx*jy, 1); % 将a向量复制jx*jy遍 b_rep = repmat(b(:)', jx*jy, 1); % 将b向量复制jx*jy遍 Xt_rep = repmat(Xt(:), 1, nj); % 将Xt矩阵复制nj遍 Yt_rep = repmat(Yt(:), 1, nj); % 将Yt矩阵复制nj遍 k_rep = repmat(k(:)', jx*jy*zks, 1); % 将k向量复制jx*jy*zks遍 JSX_rep = JSX_rep(:); % 将JSX_rep矩阵展开成列向量 JSY_rep = JSY_rep(:); % 将JSY_rep矩阵展开成列向量 SLX_rep = SLX_rep(:); % 将SLX_rep矩阵展开成列向量 SLY_rep = SLY_rep(:); % 将SLY_rep矩阵展开成列向量 z_rep = z_rep(:); % 将z_rep矩阵展开成列向量 a_rep = a_rep(:); % 将a_rep矩阵展开成列向量 b_rep = b_rep(:); % 将b_rep矩阵展开成列向量 Xt_rep = Xt_rep(:); % 将Xt_rep矩阵展开成列向量 Yt_rep = Yt_rep(:); % 将Yt_rep矩阵展开成列向量 k_rep = k_rep(:); % 将k_rep矩阵展开成列向量 rr_rep = repmat(rr(:), 1, nj); % 将rr矩阵复制nj遍 rr_rep = rr_rep(:); % 将rr_rep矩阵展开成列向量 % 计算系数矩阵 A = (z_rep.^2 ./ (z_rep.^2 + Xt_rep.^2 + Yt_rep.^2)) .* log(sqrt(z_rep.^2 + Xt_rep.^2 + Yt_rep.^2) + z_rep) ... - (z_rep - a_rep) .* (z_rep + a_rep) ./ ((z_rep + a_rep).^2 + Xt_rep.^2 + Yt_rep.^2) ... - (z_rep - b_rep) .* (z_rep + b_rep) ./ ((z_rep + b_rep).^2 + Xt_rep.^2 + Yt_rep.^2); % 计算位势值 phi = sum(A .* rr_rep ./ k_rep); % 将位势值矩阵恢复成原始大小 phi = reshape(phi, jx, jy); ``` 这里将点到所有钻孔的距离矩阵rr进行了广播运算,然后将多个矩阵复制成相应的大小,并展开成一维列向量,最后进行矩阵运算,计算出位势值矩阵phi。

def forward(self, g, feat): with g.local_scope(): g.ndata['h'] = feat g.update_all(self.message_func1, fn.mean(msg='m', out='h')) # g.update_all(self.message_func2, fn.mean(msg='m', out='h')) node_rep = g.ndata['h'] if self.layer_norm: node_rep = self.layer_norm_weight(node_rep) if self.bias: node_rep = node_rep + self.h_bias if self.self_loop: h = self.node_ME(feat, feat) node_rep = node_rep + h if self.activation: node_rep = self.activation(node_rep) node_rep = self.dropout(node_rep) return node_rep

这段代码是 GNNLayer 中的 `forward` 方法的实现。 `` 方法用于执行 GNNLayer 的前向计算。首先,通过 `g.local_scope()` 创建一个本地作用域以确保计算的中结果不会影响其他计算。然后,将输入特征 `feat` 存储在图 `g` 的节点特征字典 `ndata` 中的键 `'h'` 下。 接下来,使用 `g.update_all(self.message_func1, fn.mean(msg='m', out='h'))` 对图 `g` 中的所有边进行消息传递,并使用 `mean` 函数对接收到的消息进行聚合,然后将结果存储在节点特征字典 `ndata` 的键 `'h'` 中。 随后,根据需要对节点特征进行一系列操作。如果 `layer_norm` 为真,则对节点特征进行层归一化操作。如果 `bias` 为真,则对节点特征添加偏置项。如果 `self_loop` 为真,则使用 `node_ME` 对输入特征进行记忆编码,并将结果与节点特征相加。接着,如果提供了激活函数,则对节点特征进行激活操作。最后,对节点特征进行 `dropout` 操作,并将结果返回。 这段代码展示了 GNNLayer 中前向计算的具体实现。在前向计算过程中,首先进行消息传递和聚合操作,然后根据需要对节点特征进行一系列的转换和操作,最终得到更新后的节点表示。这个方法用于更新图神经网络中每一层节点的表示,并将结果传递给下一层进行进一步的计算。
阅读全文

相关推荐

最新推荐

recommend-type

nanomsg-req-rep流程源码分析.docx

知识点2:Req/Rep模式 Req/Rep模式是nanomsg库中的一种常见的通信模式,客户端发送请求,服务器端处理请求并返回响应。在这个模式下,客户端和服务器端都需要使用相应的套接字来进行通信。 知识点3:Socket消息槽 ...
recommend-type

R-REP-BT.2407-2017-PDF-E(1).pdf

报告 ITU-R BT.2407-0 (10/2017) 关于从建议 ITU-R BT.2020 转换到建议 ITU-R BT.709 的色彩范围转换,详细阐述了在超高清电视(UHDTV)宽色域制作中,特别是在同时进行现场UHDTV和高清电视(HDTV)广播的情景下,高...
recommend-type

R试题(附带答案).docx

3. length(rep(1:3 , c(2, 2, 3)))的运行结果是7。 4. which(2 : 8 > 5)的运行结果是[1] 6 7 8。 5. (c(1, 3, 5) + 4)[2]的运行结果是7。 6. x <- rep(c(1,4,7), c(3,2,1)); x[x>5]的运行结果是7。 7. v ; w [c(2,4)...
recommend-type

Lua中字符串库.docx 字符串库 Lua

2. **`string.lower(s)`**: 此函数返回字符串 `s` 的副本,其中所有的大写字母都被转换为小写字母。这在不区分大小写的比较或处理中很有用。 3. **`string.rep(s, n)`**: `string.rep` 用于创建一个新的字符串,该...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依