用python构建EDSR超分辨率模型,给出模型代码,要求输入输出通道数为1
时间: 2024-05-15 13:17:47 浏览: 184
好的,我可以帮你回答这个问题。下面是用Python构建EDSR超分辨率模型的代码:
```
import torch.nn as nn
class ResBlock(nn.Module):
def __init__(self, num_channels):
super(ResBlock, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
)
def forward(self, x):
return x + self.block(x)
class EDSR(nn.Module):
def __init__(self, num_channels=64, num_resblocks=8, res_scale=0.1):
super(EDSR, self).__init__()
self.head = nn.Conv2d(1, num_channels, kernel_size=3, stride=1, padding=1)
res_blocks = []
for _ in range(num_resblocks):
res_blocks.append(ResBlock(num_channels))
self.res_blocks = nn.Sequential(*res_blocks)
self.body = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
self.tail = nn.Conv2d(num_channels, 1, kernel_size=3, stride=1, padding=1)
self.res_scale = res_scale
def forward(self, x):
x = self.head(x)
residual = x
x = self.res_blocks(x)
x = self.body(x)
x = self.res_scale * x + residual
x = self.tail(x)
return x
```
这是一个简单的EDSR模型,包含了一个头部卷积层、多个残差块和一个尾部卷积层。输入和输出通道数都是1。
阅读全文