vl_nnconcat CNN concatenate multiple inputs. Y = vl_nnconcat(INPUTS, DIM) concatenates the inputs in the cell array INPUTS along dimension DIM generating an output Y. DZDINPUTS = vl_nnconcat(INPUTS, DIM, DZDY) computes the derivatives of the block projected onto DZDY. DZDINPUTS has one element for each element of INPUTS, each of which is an array that has the same dimensions of the corresponding array in INPUTS. 这个函数干什么的
时间: 2024-02-14 14:34:11 浏览: 149
`vl_nnconcat` 是一个在卷积神经网络中用于连接多个输入的函数。
`vl_nnconcat(INPUTS, DIM)` 将输入的多个张量(存储在一个单元数组 `INPUTS` 中)沿着指定的维度 `DIM` 进行连接,生成一个输出张量 `Y`。
`vl_nnconcat(INPUTS, DIM, DZDY)` 则计算该块对于投影到 `DZDY` 的导数。`DZDY` 是一个与 `Y` 具有相同维度的数组,表示该块的输出的导数。返回的 `DZDINPUTS` 是一个与 `INPUTS` 中的每个元素对应的数组,具有与其相同的维度。
简而言之,`vl_nnconcat` 函数用于在卷积神经网络中将多个输入沿指定维度连接在一起,并且可以计算连接块对于输出和输入的导数。这在某些网络结构中非常有用,例如将多个特征图或多个输入通道合并在一起进行处理。
相关问题
class DeepNeuralNet(torch.nn.Module): def init(self, n_users, n_items, n_factors=32, hidden_layers=[64,32]): super(DeepNeuralNet, self).init() # User and item embeddings self.user_embedding = torch.nn.Embedding(num_embeddings=n_users, embedding_dim=n_factors) self.item_embedding = torch.nn.Embedding(num_embeddings=n_items, embedding_dim=n_factors) # Fully connected hidden layers self.fc_layers = torch.nn.ModuleList([]) if len(hidden_layers) > 0: self.fc_layers.append(torch.nn.Linear(in_features=n_factors2, out_features=hidden_layers[0])) for i in range(1,len(hidden_layers)): self.fc_layers.append(torch.nn.Linear(in_features=hidden_layers[i-1], out_features=hidden_layers[i])) self.output_layer = torch.nn.Linear(in_features=hidden_layers[-1] if len(hidden_layers)> 0 else n_factors2, out_features=1) self.dropout = torch.nn.Dropout(0.2) self.sigmoid = torch.nn.Sigmoid()网络层是什么样的
这是一个使用PyTorch实现的深度神经网络模型,包含了用户和物品的嵌入层,以及多个全连接的隐藏层和一个输出层。具体来说,模型首先使用Embedding层将用户和物品的ID编码转换成对应的向量表示,然后将这些向量进行拼接(concatenate)操作。接着,模型将拼接后的向量输入到多个全连接的隐藏层中,每个隐藏层都使用ReLU激活函数进行非线性变换,并使用Dropout进行正则化。最后,模型通过一个单一的输出层,将隐藏层的输出映射到一个标量评分值,并使用Sigmoid函数进行激活。
input_shape = (None, 24) inputs = Input(shape=input_shape) # 定义TCN网络的中间层,可以设置多个卷积层和池化层 tcn_layer = TCN(nb_filters=4, kernel_size=3, dilations=[1, 2, 4])(inputs) # 定义模型,将输入层和TCN网络的中间层连接起来 model = Model(inputs=inputs, outputs=tcn_layer) # 使用predict函数获取特征,将数据分成多个batch进行处理 num_samples = x_data.shape[0] features = [] batch_size = 32 for i in range(0, num_samples, batch_size): batch = x_data[i:i + batch_size] batch = tf.expand_dims(batch, axis=0) if i + batch_size > num_samples: batch_num = num_samples - i if batch_num == 1: feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num) else: feature_batch = model.predict(batch, batch_size=batch_num) features.append(feature_batch) else: feature_batch = model.predict(batch, batch_size=batch_size) features.append(feature_batch) features = np.concatenate(features, axis=0) print(features.shape)如果想要输出长度仍为x_data[0]
如果要在输出中保留原始数据 `x_data` 的第一个维度长度,你可以在预测结束后对 `features` 进行裁剪操作,使其第一个维度的长度与 `x_data` 的第一个维度长度相同。具体来说,你可以按照以下方式修改代码:
```python
import tensorflow as tf
# 定义输入层
input_shape = (None, 24)
inputs = Input(shape=input_shape)
# 定义 TCN 网络的中间层
tcn_layer = TCN(nb_filters=4, kernel_size=3, dilations=[1, 2, 4])(inputs)
# 定义模型
model = Model(inputs=inputs, outputs=tcn_layer)
# 使用 predict 函数获取特征,将数据分成多个 batch 进行处理
num_samples = x_data.shape[0]
features = []
batch_size = 32
for i in range(0, num_samples, batch_size):
batch = x_data[i:i + batch_size]
batch = tf.expand_dims(batch, axis=0)
if i + batch_size > num_samples:
batch_num = num_samples - i
if batch_num == 1:
feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num)
else:
feature_batch = model.predict(batch, batch_size=batch_num)
features.append(feature_batch)
else:
feature_batch = model.predict(batch, batch_size=batch_size)
features.append(feature_batch)
# 将 features 沿第一个维度拼接起来
features = np.concatenate(features, axis=0)
# 对 features 进行裁剪,使其第一个维度长度与 x_data 相同
features = features[:x_data.shape[0]]
print(features.shape)
```
在上面的代码中,我们在预测结束后对 `features` 进行了裁剪操作,使其第一个维度长度与 `x_data` 相同。这样就可以保留原始数据的第一个维度长度了。
阅读全文