result.drop_duplicates(inplace=True) result = result.reset_index(drop=True)
时间: 2023-06-12 09:06:18 浏览: 147
这两行代码的作用分别是:
- `result.drop_duplicates(inplace=True)`:该代码会在原数据集 `result` 上直接去除重复的行。即如果 `result` 中有任意两行数据完全一致,那么其中一行将会被删除。如果 `inplace` 参数为 `True`,则会直接修改原数据集 `result`,否则会返回一个新的数据集。
- `result = result.reset_index(drop=True)`:该代码会在原数据集 `result` 上直接重置索引,并且删除原先的索引列。即将 `result` 的索引列重置为 `[0, 1, 2, ..., n-1]`,其中 `n` 是数据集的行数。如果 `drop` 参数为 `True`,则会删除原先的索引列,否则会将原先的索引列转换为普通列。最终,该代码会返回一个新的数据集。
需要注意的是,这两行代码都会对原数据集进行修改或重构,因此在使用之前应该确保自己理解了代码的作用,并且确认是否需要在原数据集上直接进行修改。
相关问题
优化代码 def cluster_format(self, start_time, end_time, save_on=True, data_clean=False, data_name=None): """ local format function is to format data from beihang. :param start_time: :param end_time: :return: """ # 户用簇级数据清洗 if data_clean: unused_index_col = [i for i in self.df.columns if 'Unnamed' in i] self.df.drop(columns=unused_index_col, inplace=True) self.df.drop_duplicates(inplace=True, ignore_index=True) self.df.reset_index(drop=True, inplace=True) dupli_header_lines = np.where(self.df['sendtime'] == 'sendtime')[0] self.df.drop(index=dupli_header_lines, inplace=True) self.df = self.df.apply(pd.to_numeric, errors='ignore') self.df['sendtime'] = pd.to_datetime(self.df['sendtime']) self.df.sort_values(by='sendtime', inplace=True, ignore_index=True) self.df.to_csv(data_name, index=False) # 调用基本格式化处理 self.df = super().format(start_time, end_time) module_number_register = np.unique(self.df['bat_module_num']) # if registered m_num is 0 and not changed, there is no module data if not np.any(module_number_register): logger.logger.warning("No module data!") sys.exit() if 'bat_module_voltage_00' in self.df.columns: volt_ref = 'bat_module_voltage_00' elif 'bat_module_voltage_01' in self.df.columns: volt_ref = 'bat_module_voltage_01' elif 'bat_module_voltage_02' in self.df.columns: volt_ref = 'bat_module_voltage_02' else: logger.logger.warning("No module data!") sys.exit() self.df.dropna(axis=0, subset=[volt_ref], inplace=True) self.df.reset_index(drop=True, inplace=True) self.headers = list(self.df.columns) # time duration of a cluster self.length = len(self.df) if self.length == 0: logger.logger.warning("After cluster data clean, no effective data!") raise ValueError("No effective data after cluster data clean.") self.cluster_stats(save_on) for m in range(self.mod_num): print(self.clusterid, self.mod_num) self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])
Here are some possible optimizations for the given code:
1. Instead of using a list comprehension to find columns with 'Unnamed' in their names, you can use the `filter()` function along with a lambda function to achieve the same result in a more concise way:
```
unused_index_col = list(filter(lambda x: 'Unnamed' in x, self.df.columns))
```
2. Instead of dropping duplicates and resetting the index separately, you can use the `drop_duplicates()` function with the `ignore_index` parameter set to `True` to achieve both in one step:
```
self.df.drop_duplicates(inplace=True, ignore_index=True)
```
3. Instead of using `sys.exit()` to terminate the program when there is no module data, you can raise a `ValueError` with an appropriate error message:
```
raise ValueError("No module data!")
```
4. Instead of using a series of `if` statements to find the voltage reference column, you can use the `loc` accessor with a boolean mask to select the first column that starts with 'bat_module_voltage':
```
volt_ref_col = self.df.columns[self.df.columns.str.startswith('bat_module_voltage')][0]
```
5. Instead of using a loop to append a single item to a list, you can use the `append()` method directly:
```
self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])
```
By applying these optimizations, the code can become more concise and efficient.
There are duplicate values, missing values, and unreasonable values in the data. Please handle them as required: Duplicate values: name: if there are two names, keep the first one. Missing values:name: drop the line. gender: fill in Unknown. age: fill in 0. community: fill in Unknown. Unreasonable values:age: if the age is less than 0, fill in 0. Please output average age of each gender in each community. Input The input is the path name of the file. 1filename = input() Output print the output dataframe as sample. Samples sample.csv 1name,gender,age,community 2name2,F,31,F 3name5,M,12,F 4name6,F,88,E 5name3,M,18,G 6name9,F,85,D 7name5,M,87,G 8,M,26,C 9name2,F,60,F 10name2,F,89,F 11name0,F,15,E 12 Input sample.csv Output avg_age community gender D F 85.0 E F 51.5 F F 31.0 M 12.0 G M 18.0 use pandas in python
Sure! Here's the code to handle the data as required:
```python
import pandas as pd
# Read the input file
filename = input()
df = pd.read_csv(filename)
# Drop duplicate values
df.drop_duplicates(subset='name', keep='first', inplace=True)
# Handle missing values
df.dropna(subset=['name'], inplace=True)
df.fillna(value={'gender': 'Unknown', 'age': 0, 'community': 'Unknown'}, inplace=True)
# Handle unreasonable values
df.loc[df['age'] < 0, 'age'] = 0
# Calculate average age by gender and community
avg_age = df.groupby(['community', 'gender']).agg({'age': 'mean'}).reset_index()
# Print the output dataframe
print(avg_age)
```
This code reads the input file, handles duplicate values, missing values, and unreasonable values as required, calculates the average age by gender and community, and outputs the result as a dataframe. Let me know if you have any questions!
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)