Swin-Transform模块代码详细
时间: 2024-04-13 21:30:07 浏览: 128
以下是Swin-Transform模块的详细代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SwinTransformer(nn.Module):
def __init__(self, image_size=224, patch_size=4, embed_dim=96, depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24], num_classes=1000):
super(SwinTransformer, self).__init__()
assert image_size % patch_size == 0, "image size must be divisible by patch size"
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
# Patch Embedding
self.patch_embed = nn.Conv2d(3, embed_dim, kernel_size=patch_size, stride=patch_size)
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# Transformer Encoder
self.transformer_encoder = TransformerEncoder(embed_dim, depths, num_heads)
# Classification Head
self.head = nn.Linear(embed_dim, num_classes)
def forward(self, x):
x = self.patch_embed(x) # [batch_size, embed_dim, H', W']
x = x.flatten(2).transpose(1, 2) # [batch_size, num_patches, embed_dim]
batch_size, num_patches, _ = x.shape
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # [batch_size, 1, embed_dim]
x = torch.cat((cls_tokens, x), dim=1) # [batch_size, num_patches+1, embed_dim]
x = x + self.pos_embed # [batch_size, num_patches+1, embed_dim]
x = self.transformer_encoder(x)
x = x.mean(dim=1) # [batch_size, embed_dim]
x = self.head(x) # [batch_size, num_classes]
return x
class TransformerEncoder(nn.Module):
def __init__(self, embed_dim, depths, num_heads):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList()
for i in range(len(depths)):
self.layers.append(TransformerEncoderLayer(embed_dim, depths[i], num_heads[i]))
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, depth, num_heads):
super(TransformerEncoderLayer, self).__init__()
self.attention_norm = nn.LayerNorm(embed_dim)
self.ffn_norm = nn.LayerNorm(embed_dim)
self.attention = Attention(embed_dim, num_heads)
self.ffn = FeedForwardNetwork(embed_dim)
self.depth = depth
def forward(self, x):
residual = x
for _ in range(self.depth):
x = x + self.attention_norm(self.attention(x))
x = x + self.ffn_norm(self.ffn(x))
return x
class Attention(nn.Module):
def __init__(self, embed_dim, num_heads):
super(Attention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.qkv = nn.Linear(embed_dim, embed_dim * 3)
self.proj = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
qkv = self.qkv(x)
q, k, v = torch.split(qkv, self.embed_dim, dim=-1)
q = q.reshape(*q.shape[:-1], self.num_heads, self.head_dim).transpose(-2, -3)
k = k.reshape(*k.shape[:-1], self.num_heads, self.head_dim).permute(0, 2, 3, 1)
v = v.reshape(*v.shape[:-1], self.num_heads, self.head_dim).transpose(-2, -3)
attn_scores = torch.matmul(q, k) / (self.head_dim ** 0.5)
attn_scores = F.softmax(attn_scores, dim=-1)
attn_output = torch.matmul(attn_scores, v)
attn_output = attn_output.transpose(-2, -3).reshape(*attn_output.shape[:-3], self.embed_dim)
x = self.proj(attn_output)
return x
class FeedForwardNetwork(nn.Module):
def __init__(self, embed_dim):
super(FeedForwardNetwork, self).__init__()
self.ffn = nn.Sequential(
nn.Linear(embed_dim, 4 * embed_dim),
nn.GELU(),
nn.Linear(4 * embed_dim, embed_dim)
)
def forward(self, x):
return self.ffn(x)
```
这就是Swin-Transform模块的详细代码。你可以将这段代码集成到你的FFANet模型中,并根据需要进行调整。记得根据实际情况修改输入输出尺寸、深度、头数等模块的参数。
阅读全文