swin-transform模块详细代码
时间: 2023-08-11 17:02:30 浏览: 92
以下是一个简单的示例,展示如何在PyTorch中实现Swin Transformer模块的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SwinTransformerBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4):
super(SwinTransformerBlock, self).__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = nn.MultiheadAttention(dim, num_heads)
self.norm2 = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, dim * mlp_ratio),
nn.GELU(),
nn.Linear(dim * mlp_ratio, dim)
)
def forward(self, x):
residual = x
x = self.norm1(x)
x = x.permute(1, 0, 2) # (seq_len, batch_size, dim)
x, _ = self.attn(x, x, x) # self-attention
x = x.permute(1, 0, 2) # (batch_size, seq_len, dim)
x += residual
residual = x
x = self.norm2(x)
x = self.mlp(x) # feed-forward network
x += residual
return x
class SwinTransformer(nn.Module):
def __init__(self, num_layers, dim, num_heads, mlp_ratio=4):
super(SwinTransformer, self).__init__()
self.embedding = nn.Linear(128, dim) # input embedding
self.layers = nn.ModuleList([
SwinTransformerBlock(dim, num_heads, mlp_ratio)
for _ in range(num_layers)
])
self.norm = nn.LayerNorm(dim)
def forward(self, x):
x = self.embedding(x) # input embedding
for layer in self.layers:
x = layer(x)
x = self.norm(x)
return x
```
上述代码定义了一个SwinTransformerBlock类和一个SwinTransformer类。SwinTransformerBlock类表示Swin Transformer模块的基本构建块,包括多头自注意力机制和前馈网络。SwinTransformer类则由多个SwinTransformerBlock组成,用于构建整个Swin Transformer模块。
请注意,上述代码只是一个简化的示例,实际使用时可能需要根据具体需求进行适当的修改和调整。此外,代码中的输入维度、参数设置等也可能需要根据实际情况进行调整。
希望这个示例能对你理解如何实现Swin Transformer模块有所帮助。如果需要更详细的代码或更深入的解释,请参考相关论文和开源实现。
阅读全文