用matlab生成一个网络拓扑结构,计算网络初始拓扑效率,计算效率时不要使用内置函数,然后随机攻击网络中的若干节点,采用遗传算法找到能使网络效率恢复最快的节点修复顺序,给出代码,并输出最优修复策略的节点修复顺序,并使网络效率结果可视化
时间: 2024-05-15 16:19:36 浏览: 42
生成网络拓扑结构的代码:
```matlab
N = 10; % 网络节点数
p = 0.2; % 网络连接概率
% 生成随机网络拓扑
adj_matrix = rand(N) < p;
adj_matrix = triu(adj_matrix, 1); % 上三角矩阵,去掉对角线及下三角部分
adj_matrix = adj_matrix + adj_matrix'; % 对称矩阵
```
计算网络初始拓扑效率的代码:
```matlab
% 计算每个节点到其他节点的最短路径
dist = zeros(N); % 距离矩阵
for i = 1:N
for j = i+1:N
if adj_matrix(i,j) == 1 % 有连接
dist(i,j) = 1;
dist(j,i) = 1;
else % 无连接
dist(i,j) = inf;
dist(j,i) = inf;
end
end
end
for k = 1:N
for i = 1:N
for j = 1:N
if dist(i,k) + dist(k,j) < dist(i,j)
dist(i,j) = dist(i,k) + dist(k,j);
end
end
end
end
% 计算网络初始拓扑效率
efficiency = 0;
for i = 1:N
for j = i+1:N
if dist(i,j) ~= inf
efficiency = efficiency + 1/dist(i,j);
end
end
end
efficiency = 2*efficiency/(N*(N-1));
```
随机攻击网络中的若干节点的代码:
```matlab
% 随机选择一些节点进行攻击
num_attacks = 3; % 攻击节点数
attack_nodes = randperm(N, num_attacks);
% 将被攻击节点从网络中删除
adj_matrix(attack_nodes,:) = 0;
adj_matrix(:,attack_nodes) = 0;
```
遗传算法优化节点修复顺序的代码:
```matlab
% 适应度函数:计算修复节点顺序的效率
function efficiency = repair_fitness(attack_nodes, repair_order, adj_matrix)
N = length(adj_matrix);
% 恢复被攻击节点
for i = repair_order
adj_matrix(i,:) = 0;
adj_matrix(:,i) = 0;
end
% 计算每个节点到其他节点的最短路径
dist = zeros(N); % 距离矩阵
for i = 1:N
for j = i+1:N
if adj_matrix(i,j) == 1 % 有连接
dist(i,j) = 1;
dist(j,i) = 1;
else % 无连接
dist(i,j) = inf;
dist(j,i) = inf;
end
end
end
for k = 1:N
for i = 1:N
for j = 1:N
if dist(i,k) + dist(k,j) < dist(i,j)
dist(i,j) = dist(i,k) + dist(k,j);
end
end
end
end
% 计算网络恢复后的拓扑效率
efficiency = 0;
for i = 1:N
for j = i+1:N
if dist(i,j) ~= inf
efficiency = efficiency + 1/dist(i,j);
end
end
end
efficiency = 2*efficiency/(N*(N-1));
end
% 遗传算法参数设置
pop_size = 20; % 种群大小
num_generations = 50; % 迭代次数
mutation_prob = 0.1; % 变异概率
% 初始化种群
pop = zeros(pop_size, num_attacks); % 种群矩阵
for i = 1:pop_size
pop(i,:) = randperm(num_attacks);
end
% 迭代优化
for generation = 1:num_generations
% 计算种群适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
fitness(i) = repair_fitness(attack_nodes, pop(i,:), adj_matrix);
end
% 选择
[sorted_fitness, idx] = sort(fitness, 'descend');
elite = pop(idx(1:2),:); % 精英个体
pop = elite; % 保留精英
% 交叉
for i = 3:pop_size
p1 = randi([1 pop_size], 1);
p2 = randi([1 pop_size], 1);
child = zeros(1, num_attacks);
for j = 1:num_attacks
if rand() < 0.5
child(j) = pop(p1,j);
else
child(j) = pop(p2,j);
end
end
pop(i,:) = child;
end
% 变异
for i = 2:pop_size
if rand() < mutation_prob
idx1 = randi([1 num_attacks], 1);
idx2 = randi([1 num_attacks], 1);
pop(i,[idx1 idx2]) = pop(i,[idx2 idx1]); % 交换位置
end
end
end
% 找到最优解
best_fitness = 0;
best_repair_order = [];
for i = 1:pop_size
fitness = repair_fitness(attack_nodes, pop(i,:), adj_matrix);
if fitness > best_fitness
best_fitness = fitness;
best_repair_order = pop(i,:);
end
end
```
输出最优修复策略的节点修复顺序的代码:
```matlab
fprintf('最优修复策略的节点修复顺序:');
disp(attack_nodes(best_repair_order));
```
使网络效率结果可视化的代码:
```matlab
% 恢复被攻击节点
for i = attack_nodes(best_repair_order)
adj_matrix(i,:) = 0;
adj_matrix(:,i) = 0;
end
% 计算每个节点到其他节点的最短路径
dist = zeros(N); % 距离矩阵
for i = 1:N
for j = i+1:N
if adj_matrix(i,j) == 1 % 有连接
dist(i,j) = 1;
dist(j,i) = 1;
else % 无连接
dist(i,j) = inf;
dist(j,i) = inf;
end
end
end
for k = 1:N
for i = 1:N
for j = 1:N
if dist(i,k) + dist(k,j) < dist(i,j)
dist(i,j) = dist(i,k) + dist(k,j);
end
end
end
end
% 计算网络恢复后的拓扑效率
efficiency = 0;
for i = 1:N
for j = i+1:N
if dist(i,j) ~= inf
efficiency = efficiency + 1/dist(i,j);
end
end
end
efficiency = 2*efficiency/(N*(N-1));
% 可视化网络拓扑
G = graph(adj_matrix);
figure();
plot(G, 'Layout', 'force');
title(['网络拓扑(效率:' num2str(efficiency) ')']);
```
阅读全文