HAL库表达 //Usart3 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;//抢占优先级0 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //子优先级0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器

时间: 2023-12-06 16:43:26 浏览: 43
这段代码使用STM32的HAL库来配置USART3的中断向量表(NVIC)。具体来说,它将USART3的中断通道号设置为USART3_IRQn,将抢占优先级设置为0,将子优先级设置为0,使能该中断通道,最后使用NVIC_Init函数将以上配置参数写入到对应的NVIC寄存器中。这样,当USART3产生中断时,系统会根据中断优先级自动调用对应的中断服务程序。
相关问题

换HAL库表达 //Usart3 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;//抢占优先级0 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //子优先级0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器

使用HAL库对Usart3进行NVIC配置的代码如下: ```c /* 配置USART3中断优先级 */ HAL_NVIC_SetPriority(USART3_IRQn, 0, 0); /* 使能USART3中断 */ HAL_NVIC_EnableIRQ(USART3_IRQn); ``` 其中,`HAL_NVIC_SetPriority`函数用于设置中断的抢占优先级和子优先级,第一个参数为中断号,第二个参数为抢占优先级,第三个参数为子优先级。本例中将抢占优先级和子优先级均设置为0。 `HAL_NVIC_EnableIRQ`函数用于使能中断,将中断号作为参数传入即可。 注意,在使用HAL库进行NVIC配置时,不需要显式地初始化NVIC_InitStructure结构体,而是直接调用相关的函数进行配置。

基于HAL库ECB02蓝牙通过串口2串口透传, 实现串口2接收中断int类型数据,串口1打印

可以参考以下代码实现: ```c #include "stm32f10x.h" #define BUF_SIZE 128 uint8_t rx_buf[BUF_SIZE]; uint8_t tx_buf[BUF_SIZE]; volatile uint8_t rx_pos = 0; void USART1_Init(void) { // 启动 USART1 时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); // 配置 USART1 引脚 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置 USART1 参数 USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART1, &USART_InitStructure); // 配置 USART1 中断 NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 启动 USART1 接收中断 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); // 启动 USART1 USART_Cmd(USART1, ENABLE); } void USART2_Init(void) { // 启动 USART2 时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); // 配置 USART2 引脚 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置 USART2 参数 USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART2, &USART_InitStructure); // 启动 USART2 USART_Cmd(USART2, ENABLE); } void USART1_IRQHandler(void) { if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { uint8_t data = USART_ReceiveData(USART1); rx_buf[rx_pos++] = data; if (rx_pos >= BUF_SIZE) { rx_pos = 0; } } } int main(void) { USART1_Init(); USART2_Init(); while (1) { if (rx_pos > 0) { USART_SendData(USART1, rx_buf[0]); USART_SendData(USART2, rx_buf[0]); for (uint8_t i = 1; i < rx_pos; i++) { USART_SendData(USART2, rx_buf[i]); } rx_pos = 0; } } } ``` 这段代码中,我们使用了 STM32F10x 的 HAL 库来配置串口。我们使用了 USART1 和 USART2,其中 USART1 接收中断用来接收数据,USART2 发送数据。当 USART1 接收到数据时,将数据存储到 rx_buf 中,并通过 USART1 和 USART2 发送出去。USART1 接收到的数据会通过串口2传到另外一个设备,而 USART1 通过串口1将数据打印出来。 需要注意的是,这里的代码仅供参考,可能需要根据实际情况作出修改。例如,串口参数需要根据实际情况进行配置,以及中断优先级需要根据实际情况进行设置。同时,为了防止数据丢失,可能需要加入缓冲区以及数据校验等功能。

相关推荐

最新推荐

recommend-type

MTK_Camera_HAL3架构.doc

适用于MTK HAL3架构,介绍AppStreamMgr , pipelineModel, P1Node,P2StreamingNode等模块
recommend-type

STM32不完全手册_HAL库版本_V1.0.pdf

3,实战篇,主要通过 38 个实例(绝大部分是直接操作 HAL 库完成的)带领大家一步步深入 STM32 的学习。 本手册为 ALIENTEK MiniSTM32 V3.0 开发板的配套教程,在开发板配套的光盘里面,有详细原理图以及所有实例的...
recommend-type

STM32 HAL_LOCK问题

在使用STM32的HAL库开发时候,在使用UART和CAN的使用,偶尔会碰到突然不再接收数据的情况.调试发现,信号有的,但是就是软件不再进入接收中断了. 通过调试,最后定位到问题点在于__HAL_LOCK()这个函数里. 以下用uart为...
recommend-type

STM32H750开发指南-寄存器版本_V1.01.pdf

本手册将由浅入深,带领大家学习 STM32H750 的各个功能,为您开启 STM32H750 的学习之旅。 本手册总共分为三篇: 1,硬件篇,主要介绍本手册硬件平台; 2,软件篇, 主要介绍STM32H750 常用开发软件的... 3, 实战篇,
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依