sklearn.linear_model.lasso
时间: 2023-04-30 09:06:12 浏览: 232
b'sklearn.linear_model.lasso' 是 scikit-learn 中的一个线性回归模型,采用 L1 正则化来进行特征选择和降维。Lasso 的作用是尽可能地减少模型中的不重要的特征,仅保留对目标变量有大贡献的特征,具有较好的预测性能。
相关问题
from sklearn.datasets import load_boston import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split
这段代码主要是导入了一些Python的第三方库,包括:
- sklearn.datasets:用于加载波士顿房价数据集。
- numpy:用于进行科学计算,如数组操作、数值计算等。
- pandas:用于数据处理和分析,如数据读取、转换、合并等。
- matplotlib.pyplot:用于绘制数据可视化图表,如折线图、散点图等。
- sklearn.linear_model:用于线性回归模型的构建和训练。
- seaborn:基于matplotlib的数据可视化库,提供更加美观的图表风格。
- sklearn.preprocessing:用于数据预处理,如标准化、归一化、缺失值处理等。
- sklearn.model_selection:用于模型训练和评估的数据集划分、交叉验证等操作。
其中,load_boston函数用于加载波士顿房价数据集,LassoCV是一种线性回归模型,可以进行自动特征选择和正则化,StandardScaler用于对数据进行标准化处理,train_test_split用于将数据集划分为训练集和测试集。
sklearn.linear_model
sklearn.linear_model 是 scikit-learn 库中用于线性回归分析的模块。它包含了许多线性回归的模型,如线性回归,岭回归,Lasso 回归等。这些模型可以用来预测数值型目标变量,根据自变量的值。
阅读全文