from sklearn.model_selection import train_test_split, KFold, cross_val_score from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import LinearSVR, SVR from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import GradientBoostingRegressor,RandomForestRegressor,BaggingRegressor from xgboost import XGBRegressor # from lightgbm import LGBMRegressor from catboost import CatBoostRegressor models = { " Linear Regression": LinearRegression(), " Linear Regression (L2 Regularization)": Ridge(), " Linear Regression (L1 Regularization)": Lasso(), " K-Nearest Neighbors": KNeighborsRegressor(), "Support Vector Machine (Linear Kernel)": LinearSVR(), " Support Vector Machine (RBF Kernel)": SVR(), " Decision Tree": DecisionTreeRegressor(), " Random Forest": RandomForestRegressor(), " Gradient Boosting": GradientBoostingRegressor(loss='absolute_error'), " XGBoost": XGBRegressor(), " LightGBM": LGBMRegressor(), " CatBoost": CatBoostRegressor(verbose=0) }
时间: 2024-03-31 08:32:08 浏览: 103
这段代码是一个 Python 字典,其中包含了多个回归模型,使用了不同的 Python 库来实现。其中包括了线性回归(Linear Regression)、带 L2 正则化的线性回归(Ridge)、带 L1 正则化的线性回归(Lasso)、K 近邻回归(KNeighborsRegressor)、线性支持向量机回归(LinearSVR)、径向基函数支持向量机回归(SVR)、决策树回归(DecisionTreeRegressor)、随机森林回归(RandomForestRegressor)、梯度提升回归(GradientBoostingRegressor)、XGBoost 回归(XGBRegressor)、LightGBM 回归(LGBMRegressor)和 CatBoost 回归(CatBoostRegressor)等多个模型。这些模型可以用于回归预测任务,每个模型都有不同的优缺点和适用场景。该代码将这些模型都定义在了一个字典中,方便进行调用和比较。同时,该代码还引入了一些常用的模型选择和评估方法,如数据集划分(train_test_split)、K 折交叉验证(KFold)、交叉验证评分(cross_val_score)等。
相关问题
在Python中想运行from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random怎么操作
要在Python中运行这些代码,你需要确保已经安装了相应的包。大多数包都可以使用`pip`进行安装。
首先,在命令行中运行以下命令来安装所需的包:
```bash
pip install scikit-learn pandas matplotlib numpy
```
然后,在你的Python脚本中导入所需的库:
```python
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
import pandas as pd
from sklearn import svm
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors
from sklearn.model_selection import train_test_split
from sklearn import datasets
from matplotlib.colors import ListedColormap
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score
import datetime
import multiprocessing as mp
from sklearn.ensemble import StackingClassifier
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
import random
```
请确保在运行这些代码之前,已经安装了所需的Python库。如果遇到任何问题,请确保已正确安装这些库,并且版本与代码兼容。
优化这段代码# import modules 导入模块 from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random
你可以对这段代码进行如下优化:
```python
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split, StratifiedShuffleSplit, StratifiedKFold, GridSearchCV, LeaveOneOut, cross_val_predict, KFold
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, StackingClassifier
from sklearn.metrics import roc_auc_score
# 导入模块
# 设置随机种子
random.seed(42)
np.random.seed(42)
# 其他代码...
```
这样做的优点是将导入的模块进行整理和分类,提高了代码的可读性。同时,设置了随机种子,保证了代码的可复现性。你可以根据需要添加其他的代码或模块。