gnn和transformer结合
时间: 2023-08-28 15:05:55 浏览: 293
理解深度学习,包括最新的transformer和GNN
GNN(Graph Neural Network)和Transformer可以通过结合形成Graph Transformer。从连接结构的角度来看,当图是全连接图时,GNN的节点更新公式和Transformer的节点更新公式实际上是相似的。当Graph是全连接图时,GNN的节点公式实际上等同于Transformer的节点公式,因为Transformer关注每一个单词对当前单词的影响。因此,Transformer可以看作是全连接的GAT(Graph Attention Network) 。
Graph Transformer是一种将GNN和Transformer结合起来的方法。它继承了GNN和Transformer的优点,同时克服了它们各自的局限性。Graph Transformer在处理图数据时可以对节点和边进行更灵活的建模,并且能够捕捉到节点之间的复杂关系和依赖关系。
总结起来,Graph Transformer是通过结合GNN和Transformer的特点和优势,形成的一种新的模型。它能够更好地处理图数据,并且能够捕捉到节点之间的复杂关系和依赖关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [一份PPT快速了解Graph Transformer,包括其与GNN、Transformer的关联](https://blog.csdn.net/moxibingdao/article/details/129234145)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文