2. 停车场管理(栈和队列) [题目描述] 设停车场是一个可以停放n辆汽车的狭长通道,且只有一个大门可供汽车进出。汽车在停车场内按车辆到达时间的先后顺序,依次由北向南排列(大门在最南端,最先到达的第一辆车停放在车场的最北端),若车场内已停满n辆车,那么后来的车只能在门外的便道上等候,一旦停车场内有车开走,则排在便道上的第一辆车即可开入;当停车场内某辆车要离开时,在它之后进入的车辆必须先退出车场为它让路,待该辆车开出大门外,其他车辆再按原次序进入车场。试为停车场编制按上述要求进行管理的模拟程序。 以栈模拟停车场,以队列模拟车场外的便道。每一组输入数据包括三个数据项:汽车“到达”或“离去”信息、汽车牌照号码以及到达或离去的时刻。对每一组输入数据进行操作后的输出信息为:若是车辆到达,则输出汽车在停车场内或便道上的停车位置;当车辆将要离去时,若车在停车场内,模拟输出汽车出入情况并输出汽车在停车场内停留的时间,若车在便道上,直接输出汽车在停车场内停留的时间:0。栈以顺序存储结构实现,队列以链表结构实现。 用c语言写

时间: 2024-04-04 13:31:34 浏览: 89
DOCX

停车场管理--栈、队列和递归算法设计

以下是停车场管理的C语言实现代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXSIZE 100 // 汽车信息结构体 typedef struct { char id[10]; // 车牌号码 int arrive_time; // 到达时间 int park_time; // 停留时间 } Car; // 栈结构体 typedef struct { Car data[MAXSIZE]; // 栈中存储的汽车信息 int top; // 栈顶指针 } Stack; // 队列结构体 typedef struct Node { Car data; // 队列中存储的汽车信息 struct Node *next; // 指向下一个节点的指针 } Node, *QueuePtr; typedef struct { QueuePtr front; // 队头指针 QueuePtr rear; // 队尾指针 } Queue; // 初始化栈 void InitStack(Stack *s) { s->top = -1; } // 判断栈是否为空 int IsStackEmpty(Stack s) { return s.top == -1; } // 判断栈是否已满 int IsStackFull(Stack s) { return s.top == MAXSIZE - 1; } // 入栈 int PushStack(Stack *s, Car c) { if (IsStackFull(*s)) { return 0; // 栈已满,入栈失败 } s->data[++s->top] = c; return 1; // 入栈成功 } // 出栈 int PopStack(Stack *s, Car *c) { if (IsStackEmpty(*s)) { return 0; // 栈已空,出栈失败 } *c = s->data[s->top--]; return 1; // 出栈成功 } // 获取栈顶元素 int GetTopStack(Stack s, Car *c) { if (IsStackEmpty(s)) { return 0; // 栈已空,获取栈顶元素失败 } *c = s.data[s.top]; return 1; // 获取栈顶元素成功 } // 初始化队列 void InitQueue(Queue *q) { q->front = q->rear = (QueuePtr)malloc(sizeof(Node)); if (!q->front) { exit(1); // 内存分配失败,退出程序 } q->front->next = NULL; } // 判断队列是否为空 int IsQueueEmpty(Queue q) { return q.front == q.rear; } // 入队 void EnQueue(Queue *q, Car c) { QueuePtr p = (QueuePtr)malloc(sizeof(Node)); if (!p) { exit(1); // 内存分配失败,退出程序 } p->data = c; p->next = NULL; q->rear->next = p; q->rear = p; } // 出队 int DeQueue(Queue *q, Car *c) { if (IsQueueEmpty(*q)) { return 0; // 队列已空,出队失败 } QueuePtr p = q->front->next; *c = p->data; q->front->next = p->next; if (q->rear == p) { q->rear = q->front; } free(p); return 1; // 出队成功 } // 查找栈中指定车牌号码的汽车位置(从栈顶开始查找) int SearchStack(Stack s, char *id) { int i; for (i = s.top; i >= 0; i--) { if (strcmp(s.data[i].id, id) == 0) { return s.top - i + 1; // 返回车辆在停车场内的位置 } } return -1; // 没有找到指定车牌号码的汽车 } int main() { Stack s; // 停车场 Queue q; // 便道 InitStack(&s); InitQueue(&q); int n; // 停车场可停放的汽车数量 printf("请输入停车场可停放的汽车数量:"); scanf("%d", &n); while (1) { int op, time; Car c; printf("请输入操作类型(1表示到达,2表示离去,0表示退出):"); scanf("%d", &op); if (op == 0) { break; // 退出程序 } printf("请输入车牌号码和时间:"); scanf("%s %d", c.id, &time); if (op == 1) { // 车辆到达 if (IsStackFull(s)) { // 停车场已满,加入便道等待 printf("停车场已满,加入便道等待\n"); c.arrive_time = time; EnQueue(&q, c); } else { // 停车场未满,直接停入停车场 printf("停车场未满,停入第%d个位置\n", PushStack(&s, c) + 1); } } else { // 车辆离去 int pos = SearchStack(s, c.id); // 查找车辆在停车场内的位置 if (pos != -1) { // 车辆在停车场内 while (s.top >= s.top - pos + 1) { // 将车辆之后的汽车全部出栈并进入便道 Car t; PopStack(&s, &t); t.park_time = time - t.arrive_time; printf("车牌号码为%s的汽车离开停车场,停留时间为%d分钟\n", t.id, t.park_time); if (!IsQueueEmpty(q)) { // 便道上有汽车等待,将其入栈 DeQueue(&q, &t); t.arrive_time = time; printf("便道上的车牌号码为%s的汽车进入停车场,停入第%d个位置\n", t.id, PushStack(&s, t) + 1); } } } else { // 车辆在便道上 Queue tmp; // 临时队列,用于存储便道上的汽车 InitQueue(&tmp); while (!IsQueueEmpty(q)) { // 将便道上的汽车全部出队并入临时队列 Car t; DeQueue(&q, &t); if (strcmp(t.id, c.id) == 0) { // 找到指定车牌号码的汽车 t.park_time = time - t.arrive_time; printf("车牌号码为%s的汽车离开停车场,停留时间为%d分钟\n", t.id, t.park_time); } else { EnQueue(&tmp, t); } } while (!IsQueueEmpty(tmp)) { // 将临时队列中的汽车重新加入便道 Car t; DeQueue(&tmp, &t); EnQueue(&q, t); } } } } return 0; } ``` 注意,上述代码中使用了栈和队列两种数据结构来模拟停车场管理。其中,栈用于存储停在停车场内的汽车,队列用于存储在便道上等待进入停车场的汽车。在程序运行过程中,根据用户输入的操作类型,程序会进行相应的操作。如果是车辆到达,程序会根据停车场是否已满来决定是否将车辆停在停车场内或放在便道上等待;如果是车辆离去,程序会先在停车场中查找目标车辆,如果找到则将目标车辆之后的所有车辆全部出栈,并将其放入便道上等待;如果在停车场中没有找到目标车辆,则程序会在便道上查找目标车辆,将其出队并统计停留时间。无论是车辆到达还是离去,程序都会输出相应的信息。
阅读全文

相关推荐

最新推荐

recommend-type

数据结构综合课设停车场问题.docx

停车场仅有一个通道,能容纳n辆车,车辆按照到达时间顺序停放,当停车场满时,车辆会在门外的便道上排队等待。车辆离开时,其后面进入的车辆需先退出为它让路。 解决这个问题的关键在于使用数据结构来有效地模拟...
recommend-type

停车场管理实验报告--数据结构

在这个停车场管理实验报告中,主要涉及了数据结构中的两种基本数据结构:栈和队列,它们在模拟实际问题中起到了关键作用。实验的目标是通过掌握栈和队列的特性和基本操作,解决停车场车辆进出的问题。 1. **栈**:...
recommend-type

JAVA实现简单停车场系统代码

在这个项目中,我们需要创建一个模拟停车场系统,该系统能够处理汽车的进出场以及收费管理。系统的核心是利用数据结构栈来模拟停车场,队列来模拟车场外的便道。以下是实现这个系统的关键点: 1. **栈**:栈用于...
recommend-type

数据结构停车场管理系统及课程设计报告

栈用于模拟停车场内车辆的进出,队列则用于管理等待进入停车场的车辆。 栈是一种“后进先出”(LIFO)的数据结构,非常适合模拟车辆在停车场内的行为。当车辆进入停车场时,它们被“压入”栈中,从最里面的位置开始...
recommend-type

停车场管理问题堆栈和队列应用数据结构课程设计

在这个停车场管理问题中,主要涉及了两种数据结构的...通过以上分析,我们可以看出,堆栈和队列在这类问题中起到了关键作用,它们帮助我们有效地管理车辆的进出顺序和费用计算,实现了一个模拟停车场管理的简单模型。
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。