写一段transformer模型的代码,实验目的是为了预测几种因素对难治性ITP预后的影响
时间: 2024-12-20 14:22:38 浏览: 11
Transformer模型在自然语言处理任务中非常流行,例如文本分类,它也可以应用于医学领域的问题,比如预测疾病预后。这里是一个简化的例子,使用PyTorch库实现一个基于Transformer的模型来预测难治性ITP(免疫 thrombocytopenia purpura)的预后影响,假设我们有一些特征数据和对应的标签:
```python
import torch
from torch import nn
from torch.nn import TransformerEncoder, TransformerEncoderLayer
class ITTPredictionModel(nn.Module):
def __init__(self, num_factors, num_classes, embedding_dim, nhead, dropout=0.1):
super(ITTPredictionModel, self).__init__()
self.embedding = nn.Embedding(num_factors, embedding_dim)
encoder_layer = TransformerEncoderLayer(embedding_dim, nhead, dim_feedforward=2048, dropout=dropout)
self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
self.linear = nn.Linear(embedding_dim, num_classes)
def forward(self, inputs):
embedded_inputs = self.embedding(inputs) # 假设inputs是一个包含因素的tensor
encoded = self.transformer_encoder(embedded_inputs.permute(1, 0, 2)) # 将输入转置以便Transformer编码
output = self.linear(encoded.mean(dim=1)) # 使用平均池化处理序列,然后通过全连接层
return output
# 实验设置
num_factors = 10 # 假设有10种影响因素
num_classes = 2 # 预后分为两类(好/坏)
embedding_dim = 512
nhead = 8
model = ITTPredictionModel(num_factors, num_classes, embedding_dim, nhead)
# 假设我们有一个训练集和验证集
train_data, val_data = ..., ...
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
train_loss = model.train_on_batch(train_data)
val_loss = model.eval_on_batch(val_data)
print(f"Epoch {epoch+1}: Train Loss: {train_loss}, Val Loss: {val_loss}")
阅读全文