MOEAD算法改进python
时间: 2023-09-11 15:04:45 浏览: 217
moead优化算法
MOEA/D (Multi-Objective Evolutionary Algorithm Based on Decomposition) 是一种用于多目标优化问题的进化算法。它通过将多目标问题转化为一组单目标子问题,并使用分解方法来解决这些子问题。下面是一个简单的示例代码,展示了如何实现MOEA/D算法的改进版本:
```python
import numpy as np
def initialization(pop_size, num_objectives, num_variables):
population = np.random.rand(pop_size, num_variables)
weights = np.random.rand(pop_size, num_objectives)
return population, weights
def decomposition(population, weights):
objectives = np.zeros((population.shape[0], weights.shape[1]))
for i in range(population.shape[0]):
for j in range(weights.shape[1]):
objectives[i, j] = np.sum(population[i] * weights[i, j])
return objectives
def selection(objectives, num_neighbors):
neighbors = np.zeros((objectives.shape[0], num_neighbors), dtype=int)
for i in range(objectives.shape[0]):
distances = np.linalg.norm(objectives - objectives[i], axis=1)
indices = np.argsort(distances)[:num_neighbors]
neighbors[i] = indices
return neighbors
def crossover(parents, num_offspring):
offspring = []
for _ in range(num_offspring):
parent1, parent2 = np.random.choice(parents, 2, replace=False)
alpha = np.random.rand()
child = alpha * parent1 + (1 - alpha) * parent2
offspring.append(child)
return np.array(offspring)
def mutation(individuals, mutation_rate):
for i in range(individuals.shape[0]):
for j in range(individuals.shape[1]):
if np.random.rand() < mutation_rate:
individuals[i, j] = np.random.rand()
return individuals
def moead(pop_size, num_generations, num_objectives, num_variables, num_neighbors, mutation_rate):
population, weights = initialization(pop_size, num_objectives, num_variables)
objectives = decomposition(population, weights)
for _ in range(num_generations):
neighbors = selection(objectives, num_neighbors)
offspring = crossover(population[neighbors], pop_size)
offspring = mutation(offspring, mutation_rate)
offspring_objectives = decomposition(offspring, weights)
for i in range(pop_size):
for j in neighbors[i]:
if np.all(offspring_objectives[i] <= objectives[j]):
population[j] = offspring[i]
objectives[j] = offspring_objectives[i]
return population, objectives
# 示例用法
pop_size = 100 # 种群大小
num_generations = 100 # 迭代次数
num_objectives = 2 # 目标数量
num_variables = 10 # 变量数量
num_neighbors = 5 # 邻居数量
mutation_rate = 0.1 # 变异率
population, objectives = moead(pop_size, num_generations, num_objectives, num_variables, num_neighbors, mutation_rate)
print("Final Population:")
print(population)
print("Final Objectives:")
print(objectives)
```
这是一个简单的MOEA/D算法改进版本的实现,你可以根据自己的问题进行修改和扩展。请注意,这只是一个基本示例,并不包含所有可能的改进措施。你可以根据具体情况进行进一步的改进和优化。希望对你有帮助!
阅读全文