moead算法python代码
时间: 2023-07-04 14:01:47 浏览: 141
### 回答1:
MOEA/D(Multi-Objective Evolutionary Algorithm based on Decomposition)算法是一种用于解决多目标优化问题的进化算法。下面是部分MOEA/D算法的Python代码示例:
```python
import random
import numpy as np
# 定义目标函数
def obj_func(x):
f1 = x[0]**2
f2 = (x[0]-2)**2
return [f1, f2]
# 定义按权重分配方式计算子问题的目标函数值
def weighted_sum(weight, objs):
return np.sum(weight * objs)
# 初始化种群
def initialize_population(pop_size, num_vars):
population = np.zeros((pop_size, num_vars))
for i in range(pop_size):
population[i] = np.random.uniform(0, 1, num_vars)
return population
# 计算相邻个体
def get_neighbor(current_index, num_neighbors, pop_size):
neighbor = []
for i in range(num_neighbors):
neighbor_index = current_index - num_neighbors // 2 + i
if neighbor_index < 0:
neighbor_index += pop_size
elif neighbor_index >= pop_size:
neighbor_index -= pop_size
neighbor.append(neighbor_index)
return neighbor
# 计算邻居个体最好的目标函数值
def get_neighbor_best(population, neighbor_indices, objs):
neighbor_best = float('inf')
for index in neighbor_indices:
if objs[index] < neighbor_best:
neighbor_best = objs[index]
return neighbor_best
# 更新权重向量
def update_weights(num_weights, num_neighbors):
weights = np.zeros((num_weights, num_neighbors))
interval = 1.0 / (num_weights - 1)
for i in range(num_weights):
for j in range(num_neighbors):
weights[i, j] = i * interval - j * interval / (num_neighbors - 1)
return weights
# MOEA/D算法主函数
def moead(pop_size, num_vars, num_objectives, num_neighbors, max_gen):
population = initialize_population(pop_size, num_vars)
weights = update_weights(pop_size, num_neighbors)
objs = np.zeros(pop_size)
for gen in range(max_gen):
for i in range(pop_size):
neighbor_indices = get_neighbor(i, num_neighbors, pop_size)
neighbor_best = get_neighbor_best(population, neighbor_indices, objs)
parent1, parent2 = random.sample(neighbor_indices, 2)
child = population[parent1] + np.random.uniform(-1, 1, num_vars) * \
(population[parent2] - population[neighbor_best])
objs[i] = weighted_sum(weights[i], obj_func(child))
if objs[i] < objs[neighbor_best]:
population[neighbor_best] = child
return population
# 使用示例
pop_size = 100 # 种群大小
num_vars = 2 # 变量个数
num_objectives = 2 # 目标函数个数
num_neighbors = 10 # 邻居个数
max_gen = 100 # 最大迭代次数
population = moead(pop_size, num_vars, num_objectives, num_neighbors, max_gen)
print(population)
```
需要注意的是,上述代码只是MOEA/D算法的核心部分,具体应用的问题相关代码未提供。也可以根据实际问题需求进行适当的修改和扩展。
### 回答2:
MOEA/D(Multi-Objective Evolutionary Algorithm based on Decomposition)是一种多目标优化算法,它在进化计算领域广泛应用于解决复杂的多目标优化问题。以下是MOEA/D算法的Python代码实现:
```python
import random
# 设定问题的目标函数
def objective_function(x):
return [x[0]**2, (x[0]-2)**2]
# 初始化种群
def initialize_population(pop_size, num_var):
population = []
for _ in range(pop_size):
individual = [random.random() for _ in range(num_var)]
population.append(individual)
return population
# 计算每个解的适应度
def calculate_fitness(population):
fitness = []
for individual in population:
fitness.append(objective_function(individual))
return fitness
# 更新权重向量
def update_weights(T):
weights = []
for t in range(T):
weight = [0] * (T+1)
weight[t] = 1
weight[T] = 1 - weight[t]
weights.append(weight)
return weights
# 对每个解进行交叉操作
def crossover(parent1, parent2):
child = []
for i in range(len(parent1)):
if random.random() < 0.5:
child.append(parent1[i])
else:
child.append(parent2[i])
return child
# 对每个解进行变异操作
def mutation(individual, num_var):
mutant = individual[:]
for i in range(num_var):
if random.random() < 1/num_var:
mutant[i] = random.random()
return mutant
# MOEA/D算法主体
def moead(num_var, pop_size, max_generations, T):
population = initialize_population(pop_size, num_var)
weights = update_weights(T)
fitness = calculate_fitness(population)
ideal_point = [min([f[0] for f in fitness]), min([f[1] for f in fitness])]
for generation in range(max_generations):
for i in range(pop_size):
neighbors = random.sample(range(pop_size), T)
child = crossover(population[i], population[random.choice(neighbors)])
child = mutation(child, num_var)
child_fitness = objective_function(child)
for j in neighbors:
if child_fitness[0] < fitness[j][0] and child_fitness[1] < fitness[j][1]:
population[j] = child
fitness[j] = child_fitness
ideal_point = [min(ideal_point[0], min([f[0] for f in fitness])),
min(ideal_point[1], min([f[1] for f in fitness]))]
return ideal_point
# 使用示例
result = moead(1, 100, 100, 10)
print("Ideal point:", result)
```
以上是一个简单的实现,用于解决只有一个决策变量的两个目标函数的优化问题。在实际应用中,可以根据具体问题进行调整和改进。
阅读全文