多目标灰狼算法 python

时间: 2025-01-02 09:44:05 浏览: 13
### 使用Python实现多目标灰狼优化器 多目标灰狼优化(MOGWO, Multi-Objective Grey Wolf Optimizer)是一种基于群体智能的元启发式算法,用于解决具有多个相互冲突的目标函数的问题。该方法模拟了灰狼的社会等级制度及其狩猎行为来寻找最优解集。 下面是一个简单的MOGWO框架在Python中的基本实现: ```python import numpy as np from pymoo.algorithms.moo.moead import MOEAD from pymoo.optimize import minimize from pymoo.problems.multi import get_problem from pymoo.util.display import Display from pymoo.visualization.scatter import Scatter class GWO: def __init__(self, objective_functions, lb, ub, dimension, population_size=30, max_iter=1000): self.objectives = objective_functions self.lb = lb self.ub = ub self.dim = dimension self.pop_size = population_size self.max_iter = max_iter # 初始化种群位置向量 self.positions = np.random.uniform(self.lb, self.ub, (self.pop_size, self.dim)) def _calculate_objective_values(self, pos): return [obj(pos) for obj in self.objectives] def optimize(self): Alpha_pos = Beta_pos = Delta_pos = None Alpha_score = float('inf') Beta_score = float('inf') Delta_score = float('inf') Convergence_curve = [] for l in range(0, self.max_iter): for i in range(0, self.pop_size): # 返回个体适应度值列表 fitness = self._calculate_objective_values(self.positions[i]) if sum(fitness) < Alpha_score: Delta_score = Beta_score Delta_pos = Beta_pos.copy() Beta_score = Alpha_score Beta_pos = Alpha_pos.copy() Alpha_score = sum(fitness) Alpha_pos = self.positions[i].copy() elif sum(fitness) < Beta_score and sum(fitness) >= Alpha_score: Delta_score = Beta_score Delta_pos = Beta_pos.copy() Beta_score = sum(fitness) Beta_pos = self.positions[i].copy() elif sum(fitness) < Delta_score and sum(fitness) >= Beta_score: Delta_pos = self.positions[i].copy() Delta_score = sum(fitness) a = 2 - l * ((2) / self.max_iter) for i in range(0, self.pop_size): r1 = np.random.rand(len(self.positions[i])) r2 = np.random.rand(len(self.positions[i])) A1 = 2 * a * r1 - a; C1 = 2 * r2; D_alpha = abs(C1 * Alpha_pos - self.positions[i]) X1 = Alpha_pos - A1 * D_alpha r1 = np.random.rand(len(self.positions[i])) r2 = np.random.rand(len(self.positions[i])) A2 = 2 * a * r1 - a C2 = 2 * r2 D_beta = abs(C2 * Beta_pos - self.positions[i]) X2 = Beta_pos - A2 * D_beta r1 = np.random.rand(len(self.positions[i])) r2 = np.random.rand(len(self.positions[i])) A3 = 2 * a * r1 - a C3 = 2 * r2 D_delta = abs(C3 * Delta_pos - self.positions[i]) X3 = Delta_pos - A3 * D_delta self.positions[i] = (X1 + X2 + X3) / 3 Convergence_curve.append([Alpha_score, Beta_score, Delta_score]) return Alpha_pos, Convergence_curve if __name__ == "__main__": problem = get_problem("zdt1") algorithm = MOEAD( ref_dirs=np.array([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]]), n_neighbors=15, prob_neighbor_mating=0.7, ) res = minimize(problem, algorithm, ('n_gen', 200), seed=1, verbose=False) gwo_instance = GWO(objective_functions=[lambda x: res.F[0][0], lambda x: res.F[1][0]], lb=-5, ub=5, dimension=res.X.shape[-1]) best_solution, convergence_data = gwo_instance.optimize() print(best_solution) ``` 此代码片段定义了一个`GWO`类,它接受几个参数作为输入:目标函数列表、下界(`lb`)、上界(`ub`)以及维度数量(`dimension`)。此外还有两个可选参数——种群大小(`population_size`)和最大迭代次数(`max_iter`)。通过调用`optimize()`成员函数执行实际寻优过程并返回找到的最佳解决方案[^1]。 为了简化示例,在主程序部分创建了一个名为`problem`的对象实例化自PyMoo库提供的测试问题之一ZDT1;接着配置好进化策略后运行最小化操作获得初步结果对象`res`;最后利用这些信息初始化我们的`gwo_instance`来进行具体求解工作[^1]。
阅读全文

相关推荐

最新推荐

recommend-type

ssm-vue-校园代购服务订单管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【OPC UA基础教程】:C#实现与汇川PLC通讯的必备指南

# 摘要 随着工业自动化和智能制造的发展,OPC UA (Open Platform Communications Unified Architecture) 协议已成为实现设备间安全通信的关键技术。本文首先概述了OPC UA协议的基础知识,随后介绍了C#语言的基础和开发环境的配置,特别是如何在C#中集成OPC UA客户端库。文章重点讨论了OPC UA在C#环境中的应用,包括实现客户端、进行数据读写操作以及订阅机制。此外,还详细探讨了如何在C#环境中实现与汇川PLC的通讯,并提供了解决异常和通讯中断情况下的策略。最后,文章分析了OPC UA在工业自动化中的高级应用,包括面对工业4.0挑战的优势
recommend-type

华三路由器acl4000允许源mac地址

ACL (Access Control List) 是华为路由器中用于网络访问控制的一种机制,它可以根据MAC地址、IP地址等信息对数据包进行过滤。在华三路由器上,比如配置ACL 4000时,如果要允许特定源MAC地址的数据包通过,你可以按照以下步骤操作: 1. 登录到路由器管理界面,通常使用telnet或者Web UI(如AR命令行或者WebACD界面)。 2. 创建一个新的访问列表,例如: ``` acl number 4000 rule permit source mac-source-address ``` 其中,`mac-source-address`
recommend-type

前端开发基础三部曲:HTML、CSS、JavaScript实例教程

资源摘要信息:"前端开发入门实例代码.zip" 这份资源包含了初学者在前端开发领域中所需的HTML、CSS和JavaScript的基础知识。通过实例代码的方式,初学者可以快速上手并理解这三种核心技术。 HTML部分的文件名称为“第1部分 HTML基础”,它将介绍HTML的结构和基本标签的使用。HTML(超文本标记语言)是构建网页内容的骨架。初学者将学习如何使用各种HTML元素来创建网页结构,包括头部、导航栏、主要内容区域、侧边栏、页脚等。此外,还将涉及表单、图片、列表等常用HTML标签的使用方法。掌握这些基础知识点,能够帮助初学者构建一个标准的网页布局,并为后续的样式和行为脚本编写奠定基础。 CSS部分的文件名称为“第2部分 CSS基础”,这部分内容将引导初学者如何通过CSS来美化网页。CSS(层叠样式表)是用来描述HTML文档呈现样式的语言。在这个部分中,初学者将了解如何选择HTML元素,并对其应用样式,包括字体、颜色、背景、边框、尺寸、定位和布局等。此外,还会介绍CSS的盒模型概念、浮动和清除浮动的技巧,以及响应式设计的基本原理。通过这些知识,初学者可以将原本简单的网页变得具有现代感,并且在不同屏幕尺寸上都能有良好的显示效果。 JavaScript部分的文件名称为“第3部分 JavaScript基础”,JavaScript是网页中实现动态交互效果的关键技术。在这个部分中,初学者将开始学习JavaScript的基本语法,包括变量、数据类型、运算符、控制结构(如if语句和循环)、函数等。接着,将会教授如何操作DOM(文档对象模型),这是一种允许JavaScript与HTML文档动态交互的方式。通过学习事件处理、表单验证、简单的动画和交互式功能的实现,初学者能够理解如何在网页上加入动态效果,并且提升用户交互体验。 这份“前端开发入门实例代码.zip”资源非常适合那些希望入门前端开发领域的初学者,它将通过实例代码结合理论知识的方式,让学习者在实践中掌握前端开发的基础技能。无论是对于未来想要从事Web开发的程序员,还是对于有志于构建个人网站的爱好者,这都是一个非常好的起点。通过本资源的学习,初学者将能够创建结构合理、样式美观并且具有基本交互功能的网页,并为进一步深入学习前端技术打下坚实的基础。