灰狼算法 python类
时间: 2024-10-20 11:01:39 浏览: 36
灰狼优化算法(Grey Wolf Optimizer,简称GWO)是一种模拟自然生态中狼群狩猎行为的优化算法。在Python中实现灰狼算法,通常会创建一个类来封装算法的核心逻辑,包括初始化狼的位置、计算食物源距离、更新狼的位置以及寻找最佳解等步骤。
以下是简单的灰狼优化算法类的一个概述:
```python
class GWO:
def __init__(self, n_wolves, n_iterations, search_space):
self.n_wolves = n_wolves # 狼的数量
self.n_iterations = n_iterations # 迭代次数
self.search_space = search_space # 搜索空间范围
self.wolves = self.initialize_wolves() # 初始化狼的位置
def initialize_wolves(self):
# 初始化狼位置,随机生成在搜索空间范围内
return [self.random_position() for _ in range(self.n_wolves)]
def alpha_beta_delta(self, best_global, wolves):
# 计算阿尔法(Alpha)、贝塔(Beta)和德尔塔(Delta)狼的位置
alpha = max(wolves, key=lambda x: x.value)
beta = sorted(wolves, key=lambda x: x.value, reverse=True)[1]
delta = sorted(wolves, key=lambda x: x.value, reverse=True)[2:]
return alpha, beta, delta
def update_positions(self, alpha, beta, delta):
# 更新狼的位置,参考狼群领袖的位置
new_positions = []
for wolf in wolves:
a = 2 - self.current_iteration / self.n_iterations
A1, A2 = 2 * a * random.random(), 2 * a * (random.random() < 0.5) - a
X_alpha, Y_alpha = alpha.position, alpha.value
X_beta, Y_beta = beta.position, beta.value
D_alpha = abs(X_alpha - wolf.position)
D_beta = abs(X_beta - wolf.position)
r1 = random.random()
r2 = random.random()
X_new = X_alpha - A1 * D_alpha + A2 * (Y_alpha - Y_beta) * D_alpha if r1 < D_alpha else X_alpha
Y_new = Y_alpha - A1 * D_alpha + A2 * (Y_alpha - Y_beta) * D_alpha if r1 < D_alpha else Y_alpha
# 同理计算beta和delta的影响
# ...
new_positions.append((X_new, Y_new))
return new_positions
def iterate(self):
for _ in range(self.n_iterations):
self.current_iteration += 1
self.update_positions(*self.alpha_beta_delta(self.best_global, self.wolves))
self.update_best_wolf(self.wolves)
def update_best_wolf(self, wolves):
# 更新当前找到的最佳解
self.best_global = max(wolves, key=lambda x: x.value)
# 使用示例
gwo = GWO(n_wolves=10, n_iterations=100, search_space=(-10, 10))
gwo.iterate()
```
阅读全文