多目标灰狼优化算法python代码
时间: 2023-03-28 09:00:52 浏览: 566
以下是多目标灰狼优化算法的 Python 代码:
```python
import numpy as np
# 定义灰狼优化算法的类
class MOGWO:
def __init__(self, obj_func, num_var, num_obj, num_wolf=30, max_iter=500, lb=-100, ub=100, a=2):
self.obj_func = obj_func # 目标函数
self.num_var = num_var # 变量个数
self.num_obj = num_obj # 目标个数
self.num_wolf = num_wolf # 狼群大小
self.max_iter = max_iter # 最大迭代次数
self.lb = lb # 变量下界
self.ub = ub # 变量上界
self.a = a # 系数
# 初始化狼群
def init_wolf(self):
self.wolf_pos = np.random.uniform(self.lb, self.ub, size=(self.num_wolf, self.num_var))
self.wolf_fitness = np.zeros((self.num_wolf, self.num_obj))
for i in range(self.num_wolf):
self.wolf_fitness[i] = self.obj_func(self.wolf_pos[i])
# 更新狼群位置
def update_wolf(self, alpha_pos, beta_pos, delta_pos):
a = 2 - 2 * self.iter / self.max_iter # 计算系数a
for i in range(self.num_wolf):
r1 = np.random.rand(self.num_var)
r2 = np.random.rand(self.num_var)
A1 = 2 * a * r1 - a
C1 = 2 * r2
D_alpha = abs(C1 * alpha_pos - self.wolf_pos[i])
X1 = alpha_pos - A1 * D_alpha
r1 = np.random.rand(self.num_var)
r2 = np.random.rand(self.num_var)
A2 = 2 * a * r1 - a
C2 = 2 * r2
D_beta = abs(C2 * beta_pos - self.wolf_pos[i])
X2 = beta_pos - A2 * D_beta
r1 = np.random.rand(self.num_var)
r2 = np.random.rand(self.num_var)
A3 = 2 * a * r1 - a
C3 = 2 * r2
D_delta = abs(C3 * delta_pos - self.wolf_pos[i])
X3 = delta_pos - A3 * D_delta
self.wolf_pos[i] = (X1 + X2 + X3) / 3
# 计算适应度值
def calc_fitness(self):
for i in range(self.num_wolf):
self.wolf_fitness[i] = self.obj_func(self.wolf_pos[i])
# 执行灰狼优化算法
def optimize(self):
self.init_wolf()
for self.iter in range(self.max_iter):
# 计算适应度值
self.calc_fitness()
# 排序
sort_index = np.argsort(self.wolf_fitness[:, ])
self.wolf_pos = self.wolf_pos[sort_index]
self.wolf_fitness = self.wolf_fitness[sort_index]
# 更新alpha、beta、delta位置
alpha_pos = self.wolf_pos[]
beta_pos = self.wolf_pos[1]
delta_pos = self.wolf_pos[2]
# 更新狼群位置
self.update_wolf(alpha_pos, beta_pos, delta_pos)
# 返回最优解
return self.wolf_pos[], self.wolf_fitness[]
```
希望对你有帮助!
阅读全文