请用python写出灰狼优化算法的代码
时间: 2024-05-15 09:20:09 浏览: 80
以下是灰狼优化算法的Python代码:
```python
import numpy as np
# 灰狼优化算法
def grey_wolf_optimizer(cost_function, lb, ub, dim, SearchAgents_no, Max_iter):
# 初始化灰狼群
Alpha_pos = np.zeros(dim)
Beta_pos = np.zeros(dim)
Delta_pos = np.zeros(dim)
Alpha_score = float("inf")
Beta_score = float("inf")
Delta_score = float("inf")
Positions = np.zeros((SearchAgents_no, dim))
for i in range(dim):
Positions[:, i] = np.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[i]
# 开始迭代
for l in range(0, Max_iter):
for i in range(0, SearchAgents_no):
# 计算适应度值
fitness = cost_function(Positions[i, :])
# 更新Alpha, Beta, Delta位置和适应度值
if fitness < Alpha_score:
Alpha_score = fitness
Alpha_pos = Positions[i, :]
if (fitness > Alpha_score) and (fitness < Beta_score):
Beta_score = fitness
Beta_pos = Positions[i, :]
if (fitness > Alpha_score) and (fitness > Beta_score) and (fitness < Delta_score):
Delta_score = fitness
Delta_pos = Positions[i, :]
# 更新狼群位置
a = 2 - 2 * l / Max_iter
for i in range(0, SearchAgents_no):
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A = 2 * a * r1 - a
C = 2 * r2
D_alpha = abs(C * Alpha_pos - Positions[i, :])
X1 = Alpha_pos - A * D_alpha
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A = 2 * a * r1 - a
C = 2 * r2
D_beta = abs(C * Beta_pos - Positions[i, :])
X2 = Beta_pos - A * D_beta
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A = 2 * a * r1 - a
C = 2 * r2
D_delta = abs(C * Delta_pos - Positions[i, :])
X3 = Delta_pos - A * D_delta
Positions[i, :] = (X1 + X2 + X3) / 3
# 返回最优解和适应度值
return Alpha_pos, Alpha_score
```
注意:此代码仅供参考,具体实现可能会因为不同的问题而有所不同。
阅读全文