基于改进灰狼优化算法的路径规划python代码
时间: 2023-11-09 13:06:53 浏览: 122
以下是基于改进灰狼优化算法的路径规划的Python代码示例:
```python
import numpy as np
# 定义问题
start = [0, 0] # 起点坐标
end = [100, 100] # 终点坐标
obstacles = [[30, 50], [60, 80], [20, 70]] # 障碍物坐标列表
class Wolf:
def __init__(self, position):
self.position = position
self.fitness = self.calculate_fitness()
def calculate_fitness(self):
# 计算适应度函数
distance = np.sqrt((self.position[0] - end[0])**2 + (self.position[1] - end[1])**2)
return distance
def initialize_population(population_size):
# 初始化种群
population = []
for _ in range(population_size):
x = np.random.uniform(start[0], end[0])
y = np.random.uniform(start[1], end[1])
wolf = Wolf([x, y])
population.append(wolf)
return population
def update_position(wolf, alpha, beta, delta):
# 更新位置
x1 = wolf.position
x2 = alpha.position
x3 = beta.position
x4 = delta.position
a1 = 2 * np.random.rand(2) - 1
a2 = 2 * np.random.rand(2) - 1
a3 = 2 * np.random.rand(2) - 1
a4 = 2 * np.random.rand(2) - 1
new_position = (x1 + a1 * (x2 - x3) + a2 * (x4 - x3)) / 2 + a3 * (x4 - x1)
# 检查新位置是否在合法范围内
new_position[0] = max(min(new_position[0], end[0]), start[0])
new_position[1] = max(min(new_position[1], end[1]), start[1])
# 检查新位置是否与障碍物发生碰撞
for obstacle in obstacles:
if np.sqrt((new_position[0] - obstacle[0])**2 + (new_position[1] - obstacle[1])**2) < 5:
new_position = wolf.position
break
return new_position
def improve_wolves(population):
# 改进灰狼位置
sorted_population = sorted(population, key=lambda x: x.fitness)
alpha = sorted_population[0]
beta = sorted_population[1]
delta = sorted_population[2]
for i in range(len(population)):
population[i].position = update_position(population[i], alpha, beta, delta)
population[i].fitness = population[i].calculate_fitness()
return population
def optimize_path(population_size, num_iterations):
# 优化路径
population = initialize_population(population_size)
for _ in range(num_iterations):
population = improve_wolves(population)
sorted_population = sorted(population, key=lambda x: x.fitness)
best_path = sorted_population[0].position
return best_path
# 示例用法
best_path = optimize_path(population_size=50, num_iterations=100)
print("Best path:", best_path)
```
这是一个简单的基于改进灰狼优化算法的路径规划代码示例。代码中定义了问题(起点、终点和障碍物),并实现了灰狼的初始化、位置更新和改进等功能。最后,通过调用`optimize_path`函数来优化路径,并返回最佳路径。
请注意,这只是一个简单的示例代码,您可能需要根据您的具体问题进行适当的修改和调整。希望对您有所帮助!
阅读全文