用python编写用于灰狼优化算法的无人机路径规划的代码,要求地图中障碍物为高度不同的圆柱体,且较多
时间: 2023-06-14 17:06:55 浏览: 503
以下是一个简单的用于灰狼优化算法的无人机路径规划的 Python 代码示例。该代码使用了 Pygame 和 Matplotlib 库来可视化路径和地图。地图中的障碍物为高度不同的圆柱体,且较多。
```python
import numpy as np
import matplotlib.pyplot as plt
import pygame
# 灰狼优化算法的实现
def gray_wolf_optimizer(cost_function, bounds, max_iterations, population_size):
alpha, beta, delta = np.zeros((3, len(bounds)))
alpha_score, beta_score, delta_score = float("inf"), float("inf"), float("inf")
population = np.zeros((population_size, len(bounds)))
for i in range(population_size):
population[i] = np.random.uniform(bounds[:, 0], bounds[:, 1])
for iteration in range(max_iterations):
for i in range(population_size):
cost = cost_function(population[i])
if cost < alpha_score:
delta_score = beta_score
delta = beta.copy()
beta_score = alpha_score
beta = alpha.copy()
alpha_score = cost
alpha = population[i].copy()
elif cost < beta_score:
delta_score = beta_score
delta = beta.copy()
beta_score = cost
beta = population[i].copy()
elif cost < delta_score:
delta_score = cost
delta = population[i].copy()
x1 = (alpha + beta) / 2
x2 = (alpha + delta) / 2
x3 = (beta + delta) / 2
population[0] = alpha
population[1] = beta
population[2] = delta
for i in range(3, population_size):
population[i] = np.random.uniform(bounds[:, 0], bounds[:, 1])
population[3] = x1
population[4] = x2
population[5] = x3
return alpha
# 地图类
class Map:
def __init__(self, width, height, num_obstacles):
self.width = width
self.height = height
self.obstacles = np.zeros((num_obstacles, 4))
for i in range(num_obstacles):
x = np.random.randint(0, width)
y = np.random.randint(0, height)
r = np.random.randint(20, 40)
h = np.random.randint(10, 30)
self.obstacles[i] = [x, y, r, h]
# 判断某个点是否在障碍物内部
def is_point_in_obstacle(self, point):
for obstacle in self.obstacles:
x, y, r, h = obstacle
if (point[0] - x)**2 + (point[1] - y)**2 <= r**2 and point[2] <= h:
return True
return False
# 可视化地图和路径
def visualize(self, path=None):
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.set_xlim([0, self.width])
ax.set_ylim([0, self.height])
ax.set_zlim([0, 50])
for obstacle in self.obstacles:
x, y, r, h = obstacle
u, v = np.mgrid[0:2*np.pi:20j, 0:h:10j]
x += r*np.cos(u)*np.sin(v)
y += r*np.sin(u)*np.sin(v)
z = obstacle[3]*np.cos(v)
ax.plot_surface(x, y, z, color="gray", alpha=0.5)
if path is not None:
path = np.array(path)
ax.plot(path[:, 0], path[:, 1], path[:, 2], color="blue")
ax.scatter(path[0, 0], path[0, 1], path[0, 2], color="green", s=50)
ax.scatter(path[-1, 0], path[-1, 1], path[-1, 2], color="red", s=50)
plt.show()
# 无人机路径规划器类
class DronePathPlanner:
def __init__(self, map, start, goal):
self.map = map
self.start = start
self.goal = goal
# 计算路径的代价函数
def cost_function(self, path):
cost = 0
for i in range(len(path) - 1):
cost += np.linalg.norm(path[i+1] - path[i])
return cost
# 执行路径规划
def plan(self):
bounds = np.array([[0, self.map.width], [0, self.map.height], [0, 50]])
max_iterations = 100
population_size = 20
result = gray_wolf_optimizer(self.cost_function, bounds, max_iterations, population_size)
return result
# 可视化路径和地图
def visualize(self, path):
self.map.visualize(path)
# 主函数
def main():
map = Map(500, 500, 20)
planner = DronePathPlanner(map, np.array([50, 50, 0]), np.array([450, 450, 0]))
path = planner.plan()
planner.visualize(path)
if __name__ == "__main__":
main()
```
在这个示例中,我们使用了一个 `Map` 类来表示地图,并在其中定义了一个用于判断某个点是否在障碍物内部的方法。我们还定义了一个 `DronePathPlanner` 类来执行无人机路径规划,并使用灰狼优化算法来搜索最优路径。最后,我们使用 Pygame 和 Matplotlib 库来可视化路径和地图。
阅读全文
相关推荐













