灰狼算法路径规划python代码
时间: 2023-10-14 15:08:02 浏览: 247
以下是使用灰狼算法进行路径规划的 Python 代码示例:
```python
import numpy as np
# 目标函数,输入为一个向量,输出为标量
def objective_function(x):
return np.sum(x)
# 灰狼算法
def grey_wolf_optimizer(obj_func, lb, ub, dim, search_agent_num, max_iter):
alpha_pos = np.zeros(dim)
alpha_score = float("inf")
beta_pos = np.zeros(dim)
beta_score = float("inf")
delta_pos = np.zeros(dim)
delta_score = float("inf")
search_agents = np.zeros((search_agent_num, dim))
for i in range(search_agent_num):
search_agents[i, :] = np.random.uniform(lb, ub, dim)
for iter_count in range(max_iter):
for i in range(search_agent_num):
fitness = obj_func(search_agents[i, :])
if fitness < alpha_score:
alpha_score = fitness
alpha_pos = search_agents[i, :]
if fitness > alpha_score and fitness < beta_score:
beta_score = fitness
beta_pos = search_agents[i, :]
if fitness > alpha_score and fitness > beta_score and fitness < delta_score:
delta_score = fitness
delta_pos = search_agents[i, :]
a = 2 - 2 * iter_count / max_iter
for i in range(search_agent_num):
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A1 = 2 * a * r1 - a
C1 = 2 * r2
D_alpha = abs(C1 * alpha_pos - search_agents[i, :])
X1 = alpha_pos - A1 * D_alpha
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A2 = 2 * a * r1 - a
C2 = 2 * r2
D_beta = abs(C2 * beta_pos - search_agents[i, :])
X2 = beta_pos - A2 * D_beta
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A3 = 2 * a * r1 - a
C3 = 2 * r2
D_delta = abs(C3 * delta_pos - search_agents[i, :])
X3 = delta_pos - A3 * D_delta
search_agents[i, :] = (X1 + X2 + X3) / 3
return alpha_pos
# 示例:使用灰狼算法求解目标函数最小值
result = grey_wolf_optimizer(objective_function, -10, 10, 5, 30, 1000)
print(result)
```
阅读全文