贪婪算法示例:最小生成树(Kruskal 算法)
时间: 2024-09-05 17:04:07 浏览: 71
Kruskal算法是一种用来找到加权无向图中最小生成树的贪心算法。最小生成树是指在一个加权无向图中,包含所有顶点且边的权重之和最小的树。
以下是Kruskal算法的步骤:
1. 将所有的边按照权重从小到大排序。
2. 初始化一个空的最小生成树。
3. 遍历排序后的边列表,对于每条边:
a. 如果这条边连接的两个顶点在最小生成树中尚未连接(即它们属于不同的连通分量),则添加这条边到最小生成树中。
b. 如果这条边连接的两个顶点已经在同一个连通分量中,则忽略这条边,继续检查下一条边。
4. 重复步骤3直到最小生成树中包含了所有顶点。
我们可以通过一个简单的例子来展示这个算法:
```java
import java.util.Arrays;
class Edge implements Comparable<Edge> {
int src, dest, weight;
public Edge(int src, int dest, int weight) {
this.src = src;
this.dest = dest;
this.weight = weight;
}
@Override
public int compareTo(Edge compareEdge) {
return this.weight - compareEdge.weight;
}
}
class Graph {
private final int vertices;
private Edge[] edgeArray;
public Graph(int vertices, Edge[] edgeArray) {
this.vertices = vertices;
this.edgeArray = edgeArray;
}
public int find(int parent[], int i) {
if (parent[i] == -1)
return i;
return find(parent, parent[i]);
}
public void union(int parent[], int x, int y) {
int xset = find(parent, x);
int yset = find(parent, y);
if (xset != yset) {
parent[xset] = yset;
}
}
public void kruskalMST() {
Edge result[] = new Edge[vertices];
int e = 0; // Result array index
int i = 0; // Index in sorted edgeArray
// Step 1: Sort all edges in non-decreasing order of their weight
Arrays.sort(edgeArray);
// Allocate memory for creating V subsets
int parent[] = new int[vertices];
for (int v = 0; v < vertices; ++v) {
parent[v] = -1
while (e < vertices - 1 && i < edgeArray.length) {
Edge next_edge = edgeArray[i++];
int x = find(parent, next_edge.src);
int y = find(parent, next_edge.dest);
// If including this edge doesn't cause cycle, include it in result
// and do a union of two sets.
if (x != y) {
result[e++] = next_edge;
union(parent, x, y);
}
// Else discard the next_edge
}
// Print the constructed MST
System.out.println("Following are the edges in the constructed MST");
for (i = 0; i < e; ++i)
System.out.println(result[i].src + " -- " + result[i].dest + " == " + result[i].weight);
}
}
public class KruskalExample {
public static void main(String[] args) {
/* Let us create the following weighted graph
10
0--------1
| \ / |\
6 |8/6 | 8\
| \ / | 8 | 2
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Edge[] edgeArray = { new Edge(0, 1, 10), new Edge(0, 2, 6), new Edge(0, 3, 5),
new Edge(1, 3, 15), new Edge(2, 3, 4) };
Graph graph = new Graph(V, edgeArray);
graph.kruskalMST();
}
}
```
这段代码定义了一个图,并使用Kruskal算法找到它的最小生成树。图中的顶点通过一个Edge数组表示,每条边包含起点、终点和权重。通过排序和并查集的方式,我们能够构造出最小生成树并输出结果。
阅读全文