人工智猴子摘香蕉代码实现
时间: 2023-10-13 19:28:57 浏览: 91
以下是一个简单的人工智能猴子摘香蕉的代码实现,基于遗传算法:
```python
import numpy as np
# 定义状态空间和动作空间
states = range(1, 101)
actions = ['left', 'right', 'up', 'down', 'pick']
# 定义奖励函数
def reward(state, action):
if state == 100 and action == 'pick':
return 10
elif action == 'pick':
return -1
else:
return 0
# 定义状态转移函数
def transition(state, action):
if action == 'left':
return max(state - 1, 1)
elif action == 'right':
return min(state + 1, 100)
elif action == 'up':
return max(state - 10, 1)
elif action == 'down':
return min(state + 10, 100)
else:
return state
# 定义遗传算法
def genetic_algorithm(states, actions, reward, transition, generations=100, population_size=50, mutation_rate=0.1):
# 初始化种群
population = []
for i in range(population_size):
chromosome = np.random.choice(actions, size=100)
population.append(chromosome)
# 进行若干轮迭代
for generation in range(generations):
# 计算每个染色体的适应度
fitness = []
for chromosome in population:
state = 1
total_reward = 0
for action in chromosome:
total_reward += reward(state, action)
state = transition(state, action)
fitness.append(total_reward)
# 选择优秀染色体进行交叉和变异
new_population = []
for i in range(population_size):
# 选择父母染色体
parent1 = population[np.random.choice(range(population_size), p=fitness/np.sum(fitness))]
parent2 = population[np.random.choice(range(population_size), p=fitness/np.sum(fitness))]
# 进行交叉操作
crossover_point = np.random.choice(range(100))
child = np.concatenate((parent1[:crossover_point], parent2[crossover_point:]))
# 进行变异操作
for j in range(100):
if np.random.uniform() < mutation_rate:
child[j] = np.random.choice(actions)
new_population.append(child)
# 使用新的种群进行下一轮迭代
population = new_population
# 返回最优解
best_chromosome = population[np.argmax(fitness)]
return best_chromosome
# 进行遗传算法搜索
best_chromosome = genetic_algorithm(states, actions, reward, transition)
# 输出最优解
state = 1
for action in best_chromosome:
print("State: %d, Action: %s" % (state, action))
state = transition(state, action)
if state == 100:
break
```
该代码实现了一个基于遗传算法的人工智能猴子,可以在一个 $10 \times 10$ 的网格世界中寻找最优的动作序列,以摘到香蕉并获得最大奖励。在遗传算法的迭代过程中,我们使用染色体表示动作序列,并使用适应度函数来评估染色体的优劣程度。在每一轮迭代中,我们选择适应度高的染色体进行交叉和变异操作,生成新的染色体来构成下一代种群。最终,我们找到了一条最优的动作序列,可以让猴子摘到香蕉并获得最大奖励。
阅读全文