opencv-python圆柱图像展开
时间: 2023-11-06 16:59:42 浏览: 412
OpenCV-Python中可以使用cv2.unwrapPerspective()函数将圆柱形图像展开成平面图像。展开过程需要提供圆柱形图像上的四个点和展开后的图像大小。下面是一个完整的圆柱形图像展开的示例代码:
```python
import cv2
import numpy as np
# Load image
img = cv2.imread('cylinder.jpg')
# Define four corners of the cylinder in the input image
corners = np.array([[250, 200], [420, 200], [420, 400], [250, 400]], dtype=np.float32)
# Define the size of the output image
output_size = (400, 600)
# Define the parameters for the perspective transform
matrix = cv2.getPerspectiveTransform(corners, np.array([[0, 0], [output_size[1], 0],
[output_size[1], output_size[0]],
[0, output_size[0]]], dtype=np.float32))
# Unwrap the cylinder image
unwrapped_img = cv2.warpPerspective(img, matrix, output_size)
# Display the original and unwrapped images
cv2.imshow('Original Image', img)
cv2.imshow('Unwrapped Image', unwrapped_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在代码中,我们首先使用cv2.imread()函数加载圆柱形图像。然后,我们定义四个点,这些点是圆柱形图像上的四个顶点。我们还定义了输出图像的大小。然后,我们使用cv2.getPerspectiveTransform()函数获取透视变换矩阵。最后,我们使用cv2.warpPerspective()函数将圆柱形图像展开成平面图像。
展开后的图像可以使用cv2.imshow()函数显示。运行代码后,将显示原始图像和展开后的图像。
阅读全文
相关推荐


















