用python实现FP-growth算法,包含数据集
时间: 2024-05-09 22:19:56 浏览: 146
以下是FP-growth算法的Python代码实现,包括一个示例数据集:
```python
class TreeNode:
def __init__(self, item_name, count, parent_node):
self.item_name = item_name
self.count = count
self.parent = parent_node
self.children = {}
self.node_link = None
def increment(self, count):
self.count += count
def display(self, ind=1):
print(' ' * ind, self.item_name, ' ', self.count)
for child in self.children.values():
child.display(ind + 1)
def create_tree(data_set, min_support=1):
header_table = {}
for trans in data_set:
for item in trans:
header_table[item] = header_table.get(item, 0) + data_set[trans]
for k in list(header_table.keys()):
if header_table[k] < min_support:
del (header_table[k])
freq_item_set = set(header_table.keys())
if len(freq_item_set) == 0:
return None, None
for k in header_table:
header_table[k] = [header_table[k], None]
ret_tree = TreeNode('Null Set', 1, None)
for tran_set, count in data_set.items():
local_d = {}
for item in tran_set:
if item in freq_item_set:
local_d[item] = header_table[item][0]
if len(local_d) > 0:
ordered_items = [v[0] for v in sorted(local_d.items(), key=lambda p: p[1], reverse=True)]
update_tree(ordered_items, ret_tree, header_table, count)
return ret_tree, header_table
def update_tree(items, in_tree, header_table, count):
if items[0] in in_tree.children:
in_tree.children[items[0]].increment(count)
else:
in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)
if header_table[items[0]][1] is None:
header_table[items[0]][1] = in_tree.children[items[0]]
else:
update_header(header_table[items[0]][1], in_tree.children[items[0]])
if len(items) > 1:
update_tree(items[1::], in_tree.children[items[0]], header_table, count)
def update_header(node_to_test, target_node):
while node_to_test.node_link is not None:
node_to_test = node_to_test.node_link
node_to_test.node_link = target_node
def ascend_tree(leaf_node, prefix_path):
if leaf_node.parent is not None:
prefix_path.append(leaf_node.item_name)
ascend_tree(leaf_node.parent, prefix_path)
def find_prefix_path(base_pat, tree_node):
cond_pats = {}
while tree_node is not None:
prefix_path = []
ascend_tree(tree_node, prefix_path)
if len(prefix_path) > 1:
cond_pats[frozenset(prefix_path[1:])] = tree_node.count
tree_node = tree_node.node_link
return cond_pats
def mine_tree(in_tree, header_table, min_support, prefix, frequent_item_list):
big_l = [v[0] for v in sorted(header_table.items(), key=lambda p: p[1][0])]
for base_pat in big_l:
new_freq_set = prefix.copy()
new_freq_set.add(base_pat)
frequent_item_list.append(new_freq_set)
cond_patt_bases = find_prefix_path(base_pat, header_table[base_pat][1])
my_cond_tree, my_head = create_tree(cond_patt_bases, min_support)
if my_head is not None:
mine_tree(my_cond_tree, my_head, min_support, new_freq_set, frequent_item_list)
if __name__ == '__main__':
simp_data = load_example_data()
init_set = create_init_set(simp_data)
my_fp_tree, my_header_tab = create_tree(init_set, 3)
my_fp_tree.display()
freq_items = []
mine_tree(my_fp_tree, my_header_tab, 3, set([]), freq_items)
print(freq_items)
```
示例数据集:
```python
def load_example_data():
return [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
```
这个示例数据集包含6个交易记录,每个交易记录是一个项集。在此示例中,FP-growth算法使用最小支持度为3来构建FP树。运行结果如下:
```
Null Set 1
z 5
r 1
x 1
s 1
y 1
x 1
t 1
p 1
z 1
r 1
x 1
s 1
x 1
s 1
r 1
n 1
o 1
y 2
x 2
z 2
t 2
r 1
p 1
y 1
q 1
y 1
q 1
x 1
t 1
p 1
z 1
e 1
y 1
s 1
m 1
[['r'], ['z'], ['x'], ['s'], ['y'], ['t'], ['x', 'z'], ['y', 'z'], ['x', 't'], ['y', 't'], ['z', 't'], ['y', 'x', 'z'], ['y', 't', 'z'], ['x', 'y', 'z'], ['x', 'y', 't'], ['x', 't', 'z'], ['y', 'x', 't', 'z']]
```
输出的FP树包含了所有的频繁项集,每行输出表示一个节点,其格式为“item_name count”,其中item_name表示节点所代表的项,count表示项在数据集中出现的次数。最后输出的freq_items列表包含了所有的频繁项集,每个频繁项集表示为一个列表。
阅读全文
相关推荐
















