请你把这段代码用def的形式改写data = torch.randn(16992, 307, 12, 2) week_feature = torch.zeros((data.shape[0], 1)) # 遍历所有时间点,获取对应的星期并将星期转化为对应的数字 for i in range(data.shape[0]): date_str = '2016-01-01 00:00:00' # 假设数据集中的时间从2016年1月1日开始 date = datetime.datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S') date += datetime.timedelta(minutes=5*i) # 每个时间点间隔5分钟 week = date.weekday() # 获取星期,0表示星期一,1表示星期二,以此类推 week_feature[i] = week + 1 # 将星期转化为对应的数字并将其存入星期特征张量中 # 将星期特征添加到原有的数据集中 week_feature=week_feature.unsqueeze(1).repeat(1, 307, 12, 1) week_feature=week_feature.reshape(16992,307,12,1) data = torch.cat((data, week_feature), dim=-1) # week_feature = week_feature.repeat(1, 307, 12, 1) # 将星期特征张量与数据集在最后一个维度上拼接 # data = torch.cat((data, week_feature), dim=-1) # 输出结果 print(data) print(data.shape) pytorch版本
时间: 2024-03-25 18:36:11 浏览: 70
可以这样改写:
```python
import torch
import datetime
def add_week_feature(data):
week_feature = torch.zeros((data.shape[0], 1))
for i in range(data.shape[0]):
date_str = '2016-01-01 00:00:00'
date = datetime.datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S')
date += datetime.timedelta(minutes=5*i)
week = date.weekday()
week_feature[i] = week + 1
week_feature = week_feature.unsqueeze(1).repeat(1, 307, 12, 1)
week_feature = week_feature.reshape(16992,307,12,1)
data = torch.cat((data, week_feature), dim=-1)
return data
data = torch.randn(16992, 307, 12, 2)
data = add_week_feature(data)
print(data)
print(data.shape)
```
这样就可以通过调用 `add_week_feature(data)` 函数来实现原有代码的功能。
阅读全文