byte[] data=candidate.getVotes(); if(Arrays.equals(data, new byte[0])) { candidate.setVotes(paillier.encrypt(BigInteger.valueOf(0)).toByteArray()); }这是什么意思这样写对吗
时间: 2024-02-07 11:02:05 浏览: 89
这段代码的作用是判断一个candidate对象的votes字段是否为空,如果为空则将其设置为加密后的0值。
首先,从candidate对象中获取votes字段的值,存储在一个byte数组data中。然后,使用Arrays.equals方法来判断data是否为空,如果data与一个空的byte数组相等,则说明data为空,此时将votes字段设置为加密后的0值。
这段代码看起来是正确的,但是需要注意一些细节。例如,paillier.encrypt方法返回的是一个PaillierCiphertext对象,而非byte数组,因此需要使用toByteArray方法将其转换为byte数组。另外,可能需要对加密后的0值进行解密操作才能得到真正的0值。
总之,这段代码需要根据具体的业务场景进行调整和完善,确保其能够正确地实现预期的功能。
相关问题
public List<sql_data> findAll() { List<sql_data> candidateList = new ArrayList<sql_data>(); String sql = "SELECT * FROM candidate_table ORDER BY name"; try { stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery(sql); while (rs.next()) { sql_data candidate = new sql_data(); candidate.setId(rs.getInt("id")); candidate.setName(rs.getString("name")); candidate.setPhotoUrl(rs.getString("photoUrl")); candidate.setVotes(rs.getInt("votes")); candidateList.add(candidate); } } catch (SQLException e) { System.out.println("获取候选人列表失败:" + e.getMessage()); } return candidateList; }
这段代码是用来查询数据库中的candidate_table表格,并按照name字段的字典序排序,返回一个由sql_data对象组成的List。具体实现是通过创建一个Statement对象stmt,执行SQL语句"SELECT * FROM candidate_table ORDER BY name",并将结果集ResultSet中的每一行数据封装成sql_data对象,最终将所有对象存储在一个List中并返回。如果在执行过程中出现了SQLException,则会打印出错误信息。
import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码
代码中的错误是使用了未定义的模块和类。需要先安装相应的模块并导入相应的类。
以下是修改后的代码:
```python
import pandas as pd
import numpy as np
from scipy.sparse import coo_matrix
from sklearn.model_selection import train_test_split
from Recommenders.SVDRecommender import SVDRecommender # 导入SVDRecommender类
triplet_dataset_sub_song_merged = pd.read_csv('triplet_dataset_sub_song_merged.csv') # 读取数据
triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index()
triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True)
triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df)
triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count']
small_set = triplet_dataset_sub_song_merged[['user','song','fractional_play_count']]
user_codes = small_set.user.drop_duplicates().reset_index()
song_codes = small_set.song.drop_duplicates().reset_index()
user_codes.rename(columns={'index':'user_index'}, inplace=True)
song_codes.rename(columns={'index':'song_index'}, inplace=True)
song_codes['so_index_value'] = list(song_codes.index)
user_codes['us_index_value'] = list(user_codes.index)
small_set = pd.merge(small_set,song_codes,how='left')
small_set = pd.merge(small_set,user_codes,how='left')
mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']]
data_array = mat_candidate.fractional_play_count.values
row_array = mat_candidate.us_index_value.values
col_array = mat_candidate.so_index_value.values
data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float)
K=50
urm = data_sparse
MAX_PID = urm.shape[1]
MAX_UID = urm.shape[0]
recommender = SVDRecommender(K) # 创建SVD推荐器
U, S, Vt = recommender.fit(urm) # 训练推荐器
uTest = [1,6,7,8,23]
uTest_recommended_items = recommender.recommend(uTest, urm, 10)
# 输出推荐结果
recommendations = pd.DataFrame(columns=['user','song', 'score','rank'])
for user in uTest:
rank = 1
for song_index in uTest_recommended_items[user, 0:10]:
song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0]
recommendations = recommendations.append({'user': user, 'song': song['song'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True)
rank += 1
display(recommendations)
```
阅读全文
相关推荐












