疲劳检测opencv
时间: 2023-10-05 12:13:05 浏览: 104
基于OpenCV的疲劳检测是通过摄像头实时采集头部视频资料,并利用OpenCV进行人脸检测和dlib模型提取人脸的68个器官特征点来实现的。首先,通过EAR(眼睛纵横比)算法和AR(嘴巴纵横比)算法来区分眼部和嘴部的行为状态。通过设置合理的阈值来判断疲劳行为。同时,利用头部姿态估计方法根据俯仰角和滚转角信息来综合判断疲劳状态。基于MAR(嘴巴张开程度)算法的打哈欠频率检测也是一种常见的疲劳检测方法。通过Dlib和OpenCV获取嘴部关键节点,计算嘴部的张开程度(MAR),当嘴巴的连续张开时间超过一定阈值时,即判定为打哈欠行为。根据统计数据设定阈值,当一分钟内打哈欠次数超过一定次数时,判定为疲劳驾驶,并发出警报提醒。基于头部姿态的打盹检测也可以通过OpenCV实现,但具体的实现方法没有在引用中提到。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [基于opencv的疲劳检测系统(UI界面,附下载链接和安装部署步骤,代码含详细注释)](https://blog.csdn.net/qq_40088030/article/details/130674333)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [openCV实战-系列教程11:文档扫描OCR识别(图像轮廓/模版匹配)项目实战、源码解读](https://download.csdn.net/download/weixin_50592077/88275160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文