matlab中18张彩色图片基于范数的全变分图像融合算法代码
时间: 2023-11-04 09:19:49 浏览: 48
以下是基于范数的全变分图像融合算法的 MATLAB 代码:
```
% 读取18张彩色图片
for i = 1:18
img{i} = imread(['img', num2str(i), '.jpg']);
end
% 定义融合结果大小
result_size = size(img{1});
% 定义全变分模型参数
lambda = 0.1;
mu = 500;
% 定义全变分模型算法参数
tol = 1e-3;
maxit = 200;
% 初始化融合结果
result = zeros(result_size(1), result_size(2), 3);
% 对每个颜色通道进行融合
for k = 1:3
% 初始化全变分模型变量
u = zeros(result_size(1), result_size(2));
p = zeros(result_size(1), result_size(2), 2);
divp = zeros(result_size(1), result_size(2));
% 构造矩阵A和向量b
A = zeros(result_size(1) * result_size(2), result_size(1) * result_size(2));
b = zeros(result_size(1) * result_size(2), 1);
for i = 1:result_size(1)
for j = 1:result_size(2)
idx = (i - 1) * result_size(2) + j;
A(idx, idx) = 4 * mu + lambda;
if i > 1
A(idx, idx - result_size(2)) = -mu;
end
if i < result_size(1)
A(idx, idx + result_size(2)) = -mu;
end
if j > 1
A(idx, idx - 1) = -mu;
end
if j < result_size(2)
A(idx, idx + 1) = -mu;
end
b(idx) = lambda * img{1}(i, j, k);
for n = 2:18
b(idx) = b(idx) + lambda * img{n}(i, j, k);
end
end
end
% 求解全变分模型
for iter = 1:maxit
% 更新u
[u, rhs] = reshape(A * reshape(u + divp / mu - p, [], 1) + b, result_size(1), result_size(2));
% 更新p
for i = 1:result_size(1)
for j = 1:result_size(2)
if i > 1
p(i, j, 1) = max(p(i, j, 1) + mu * (u(i, j) - u(i - 1, j)), 0);
end
if i < result_size(1)
p(i, j, 1) = min(p(i, j, 1) + mu * (u(i, j) - u(i + 1, j)), 0);
end
if j > 1
p(i, j, 2) = max(p(i, j, 2) + mu * (u(i, j) - u(i, j - 1)), 0);
end
if j < result_size(2)
p(i, j, 2) = min(p(i, j, 2) + mu * (u(i, j) - u(i, j + 1)), 0);
end
end
end
% 更新divp
divp = p(:, :, 1) - [p(1, :, 1); p(1:result_size(1)-1, :, 1)] + ...
p(:, :, 2) - [p(:, 1, 2), p(:, 1:result_size(2)-1, 2)];
% 检查收敛情况
if norm(rhs(:)) < tol
break;
end
end
% 将融合结果的当前颜色通道赋值为u
result(:, :, k) = u;
end
% 显示融合结果
imshow(uint8(result));
```
在运行代码之前,请确保将18张彩色图片放在当前 MATLAB 工作目录下,并分别命名为`img1.jpg`到`img18.jpg`。另外,代码中的全变分模型参数和算法参数都可以自行调整,以获得更好的融合效果。
阅读全文