写一个pytorch的GAN的代码
时间: 2024-12-23 21:20:30 浏览: 0
pytorch GAN伪造手写体mnist数据集方式
在PyTorch中创建一个基本的生成对抗网络(GAN)通常涉及两个主要组件:生成器(Generator)和判别器(Discriminator)。这里是一个简单的实例,它使用卷积神经网络(CNN)作为基础架构。请注意,为了完整运行此代码,你需要已经安装了PyTorch库。
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义生成器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
# 添加几个卷积层和反卷积层
nn.ConvTranspose2d(100, 256, 4, 1, 0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=True),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
# 定义判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
# 添加几个卷积层,最后连接到一个Sigmoid激活函数用于二分类
nn.Conv2d(1, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 1, 4, 1, 0, bias=True)
)
def forward(self, input):
validity = self.main(input).view(-1)
return validity
# 初始化模型、优化器和损失函数
generator = Generator()
discriminator = Discriminator()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
criterion = nn.BCELoss()
# GAN训练循环
for _ in range(num_epochs): # 假设num_epochs是你想要训练的轮数
for i, (real_images, _) in enumerate(train_dataloader):
# 训练判别器
discriminator.zero_grad()
real_labels = torch.ones(real_images.size(0), 1)
fake_images = generator(torch.randn(real_images.size(0), 100, 1, 1)) # 假数据
fake_labels = torch.zeros(fake_images.size(0), 1)
output_real = discriminator(real_images).view(-1)
loss_real = criterion(output_real, real_labels)
output_fake = discriminator(fake_images).view(-1)
loss_fake = criterion(output_fake, fake_labels)
loss_D = (loss_real + loss_fake) / 2
loss_D.backward()
optimizer_D.step()
# 训练生成器
generator.zero_grad()
noise = torch.randn(real_images.size(0), 100, 1, 1)
output = discriminator(fake_images)
loss_G = criterion(output, torch.ones(output.size(0), 1))
loss_G.backward()
optimizer_G.step()
print(f"Epoch [{_}/{num_epochs}], Step [{i+1}/{len(train_dataloader)}], Loss D: {loss_D.item():.4f}, Loss G: {loss_G.item():.4f}")
# 相关问题--
1. PyTorch GAN训练过程中如何调整学习率?
2. 如何保存和加载预训练的GAN模型?
3. 在GAN训练时如何防止模式崩溃?
阅读全文