你能帮我写一个pytorch的GAN生成网络吗

时间: 2023-05-27 19:06:52 浏览: 36
当然可以,以下是一个简单的PyTorch GAN生成网络的示例代码,它用于生成手写数字的图像: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from torchvision.utils import save_image # 定义超参数 latent_size = 100 hidden_size = 256 image_size = 784 batch_size = 64 num_epochs = 100 # 定义生成器 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(latent_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, image_size) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.tanh(self.fc3(x)) return x # 定义判别器 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.fc1 = nn.Linear(image_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, 1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x # 加载数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 初始化生成器和判别器 generator = Generator() discriminator = Discriminator() # 定义损失函数和优化器 criterion = nn.BCELoss() g_optimizer = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999)) d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999)) # 训练模型 for epoch in range(num_epochs): for i, (images, _) in enumerate(train_loader): # 训练判别器 real_labels = torch.ones(batch_size, 1) fake_labels = torch.zeros(batch_size, 1) # 计算判别器对真实样本的损失 real_images = images.view(-1, image_size) real_outputs = discriminator(real_images) d_loss_real = criterion(real_outputs, real_labels) # 计算判别器对生成样本的损失 noise = torch.randn(batch_size, latent_size) fake_images = generator(noise) fake_outputs = discriminator(fake_images.detach()) d_loss_fake = criterion(fake_outputs, fake_labels) # 计算判别器总损失并更新参数 d_loss = d_loss_real + d_loss_fake discriminator.zero_grad() d_loss.backward() d_optimizer.step() # 训练生成器 # 计算生成器对判别器的损失 fake_outputs = discriminator(fake_images) g_loss = criterion(fake_outputs, real_labels) # 更新生成器的参数 generator.zero_grad() g_loss.backward() g_optimizer.step() # 打印损失 if (i+1) % 100 == 0: print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], d_loss: {d_loss.item():.4f}, g_loss: {g_loss.item():.4f}") # 保存生成器的输出图像 if (epoch+1) % 10 == 0: fake_images = generator(torch.randn(batch_size, latent_size)) save_image(fake_images.view(batch_size, 1, 28, 28), f"gan_images_{epoch+1}.png") ``` 在这个示例中,我们定义了一个简单的生成器和判别器,使用MNIST数据集训练了模型,并保存了生成器的输出图像。在每个epoch中,我们首先训练判别器来区分真实和生成的样本,然后训练生成器来欺骗判别器。最后,我们保存生成器的输出图像。 这只是一个简单的示例,你可以根据需要对模型进行调整和改进。

相关推荐

好的,我可以回答这个问题。以下是一个使用 PyTorch 实现的条件 GAN 网络的示例代码: python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import transforms from torchvision.utils import save_image # 定义生成器 class Generator(nn.Module): def __init__(self, latent_dim, img_shape, num_classes): super(Generator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.model = nn.Sequential( nn.Linear(latent_dim + num_classes, 128), nn.BatchNorm1d(128, .8), nn.LeakyReLU(.2, inplace=True), nn.Linear(128, 256), nn.BatchNorm1d(256, .8), nn.LeakyReLU(.2, inplace=True), nn.Linear(256, 512), nn.BatchNorm1d(512, .8), nn.LeakyReLU(.2, inplace=True), nn.Linear(512, int(torch.prod(torch.tensor(img_shape)))), nn.Tanh() ) def forward(self, noise, labels): gen_input = torch.cat((self.label_emb(labels), noise), -1) img = self.model(gen_input) img = img.view(img.size(), *img_shape) return img # 定义判别器 class Discriminator(nn.Module): def __init__(self, img_shape, num_classes): super(Discriminator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.model = nn.Sequential( nn.Linear(num_classes + int(torch.prod(torch.tensor(img_shape))), 512), nn.LeakyReLU(.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid(), ) def forward(self, img, labels): d_in = img.view(img.size(), -1) d_in = torch.cat((d_in, self.label_emb(labels)), -1) validity = self.model(d_in) return validity # 定义训练函数 def train(generator, discriminator, dataloader, num_epochs, latent_dim, num_classes, device): adversarial_loss = nn.BCELoss() optimizer_G = optim.Adam(generator.parameters(), lr=.0002, betas=(.5, .999)) optimizer_D = optim.Adam(discriminator.parameters(), lr=.0002, betas=(.5, .999)) for epoch in range(num_epochs): for i, (imgs, labels) in enumerate(dataloader): # 训练判别器 optimizer_D.zero_grad() real_imgs = imgs.to(device) labels = labels.to(device) batch_size = real_imgs.size() valid = torch.ones(batch_size, 1).to(device) fake = torch.zeros(batch_size, 1).to(device) z = torch.randn(batch_size, latent_dim).to(device) gen_labels = torch.randint(, num_classes, (batch_size,)).to(device) gen_imgs = generator(z, gen_labels) real_loss = adversarial_loss(discriminator(real_imgs, labels), valid) fake_loss = adversarial_loss(discriminator(gen_imgs.detach(), gen_labels), fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() # 训练生成器 optimizer_G.zero_grad() z = torch.randn(batch_size, latent_dim).to(device) gen_labels = torch.randint(, num_classes, (batch_size,)).to(device) gen_imgs = generator(z, gen_labels) g_loss = adversarial_loss(discriminator(gen_imgs, gen_labels), valid) g_loss.backward() optimizer_G.step() # 打印训练信息 batches_done = epoch * len(dataloader) + i if batches_done % 400 == : print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, num_epochs, i, len(dataloader), d_loss.item(), g_loss.item()) ) # 保存生成的图像 if epoch % 5 == : save_image(gen_imgs.data[:25], "images/%d.png" % epoch, nrow=5, normalize=True) # 设置超参数 latent_dim = 100 img_shape = (1, 28, 28) num_classes = 10 num_epochs = 200 batch_size = 64 lr = .0002 b1 = .5 b2 = .999 # 加载数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((.5,), (.5,)) ]) dataset = MNIST(".", train=True, download=True, transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # 初始化模型和优化器 generator = Generator(latent_dim, img_shape, num_classes) discriminator = Discriminator(img_shape, num_classes) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") generator.to(device) discriminator.to(device) # 训练模型 train(generator, discriminator, dataloader, num_epochs, latent_dim, num_classes, device) 这个示例代码实现了一个基于 MNIST 数据集的条件 GAN 网络,可以生成手写数字图像。如果你想要使用其他数据集,可以根据需要修改代码。
好的,我可以回答这个问题。以下是一个基于 Pytorch 的两条件 GAN 网络的示例代码: python import torch import torch.nn as nn import torch.optim as optim import numpy as np # 定义生成器网络 class Generator(nn.Module): def __init__(self, input_dim, output_dim): super(Generator, self).__init__() self.fc1 = nn.Linear(input_dim, 128) self.fc2 = nn.Linear(128, 256) self.fc3 = nn.Linear(256, output_dim) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.tanh(self.fc3(x)) return x # 定义判别器网络 class Discriminator(nn.Module): def __init__(self, input_dim): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_dim, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, 1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x # 定义训练函数 def train_gan(generator, discriminator, data, num_epochs, batch_size, lr): criterion = nn.BCELoss() optimizer_g = optim.Adam(generator.parameters(), lr=lr) optimizer_d = optim.Adam(discriminator.parameters(), lr=lr) for epoch in range(num_epochs): for i in range(, len(data), batch_size): # 训练判别器 discriminator.zero_grad() real_data = data[i:i+batch_size] real_labels = torch.ones(len(real_data), 1) fake_data = generator(torch.randn(len(real_data), 2)) fake_labels = torch.zeros(len(real_data), 1) real_pred = discriminator(real_data) fake_pred = discriminator(fake_data.detach()) d_loss = criterion(real_pred, real_labels) + criterion(fake_pred, fake_labels) d_loss.backward() optimizer_d.step() # 训练生成器 generator.zero_grad() fake_data = generator(torch.randn(len(real_data), 2)) fake_labels = torch.ones(len(real_data), 1) fake_pred = discriminator(fake_data) g_loss = criterion(fake_pred, fake_labels) g_loss.backward() optimizer_g.step() # 输出损失 print('Epoch [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'.format(epoch+1, num_epochs, d_loss.item(), g_loss.item())) # 测试代码 data = np.random.normal(size=(100, 2)) generator = Generator(2, 2) discriminator = Discriminator(2) train_gan(generator, discriminator, data, num_epochs=100, batch_size=32, lr=.001) 这个 GAN 网络有两个输入条件,输出也是两个维度。你可以根据自己的需求修改输入和输出的维度。
好的,以下是一个简单的用GAN生成一维特征的PyTorch代码: python import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 用于生成真实数据的函数,本例使用 y = x^2 + 0.1*noise def get_real_samples(n_samples): x = np.linspace(-1, 1, n_samples) y = x ** 2 + 0.1 * np.random.randn(*x.shape) return x, y # 用于生成噪音数据的函数 def get_noise_samples(n_samples, noise_dim): return np.random.randn(n_samples, noise_dim) # 生成器及其对应的判别器定义 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.sigmoid = nn.Sigmoid() def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x # GAN模型训练 def train_gan(generator, discriminator, gan, n_epochs, n_batch, n_noise): # 损失函数及优化器 criterion = nn.BCELoss() optimizer_g = torch.optim.Adam(generator.parameters(), lr=0.001) optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=0.001) # 训练过程中保存损失值 gen_loss_hist = [] dis_loss_hist = [] # 训练数据准备 x_real, _ = get_real_samples(n_batch) x_real = torch.from_numpy(x_real).float() y_real = torch.ones(n_batch, 1) x_noise = torch.randn(n_batch, n_noise) # GAN模型训练 for epoch in range(n_epochs): # 更新判别器 y_fake = discriminator(generator(x_noise)) y_real_pred = discriminator(x_real.unsqueeze(1)) dis_loss_real = criterion(y_real_pred, y_real) dis_loss_fake = criterion(y_fake, torch.zeros(n_batch, 1)) dis_loss = dis_loss_real + dis_loss_fake dis_loss.backward() optimizer_d.step() discriminator.zero_grad() # 更新生成器 y_fake = discriminator(generator(x_noise)) gen_loss = criterion(y_fake, y_real) gen_loss.backward() optimizer_g.step() generator.zero_grad() # 保存损失值 gen_loss_hist.append(gen_loss.item()) dis_loss_hist.append(dis_loss.item()) # 绘制损失值曲线 plt.plot(gen_loss_hist, label='Generator Loss') plt.plot(dis_loss_hist, label='Discriminator Loss') plt.legend() # 模型训练 n_samples = 1000 n_noise = 10 n_hidden = 32 n_epochs = 2000 n_batch = 64 generator = Generator(n_noise, n_hidden, 1) discriminator = Discriminator(1, n_hidden, 1) gan = nn.Sequential(generator, discriminator) train_gan(generator, discriminator, gan, n_epochs, n_batch, n_noise) # 生成样本并绘制结果 x = np.linspace(-1, 1, n_samples) x = torch.from_numpy(x).float() y = generator(torch.randn(n_samples, n_noise)).squeeze().detach().numpy() plt.figure() plt.scatter(x, y, s=1) plt.show() 该代码通过定义生成器和判别器来实现GAN模型,生成器用于生成数据,判别器用于判断真实数据和生成数据。训练过程中先更新判别器,然后再更新生成器。本例使用了一个简单的二次函数作为真实数据的生成函数,使用Adam优化器和BCELoss损失函数进行训练。最终生成的数据可以在代码的最后绘制出来。
以下是一个简单的 PyTorch 生成对抗网络(GAN)的示例代码: import torch import torch.nn as nn import torch.optim as optim # 定义判别器网络 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(784, 512), nn.LeakyReLU(0.2), nn.Dropout(0.3), nn.Linear(512, 256), nn.LeakyReLU(0.2), nn.Dropout(0.3), nn.Linear(256, 1), nn.Sigmoid() ) def forward(self, x): x = x.view(-1, 784) out = self.model(x) return out # 定义生成器网络 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.model = nn.Sequential( nn.Linear(100, 256), nn.LeakyReLU(0.2), nn.Linear(256, 512), nn.LeakyReLU(0.2), nn.Linear(512, 784), nn.Tanh() ) def forward(self, x): out = self.model(x) out = out.view(-1, 1, 28, 28) return out # 初始化网络和优化器 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") discriminator = Discriminator().to(device) generator = Generator().to(device) optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002) optimizer_G = optim.Adam(generator.parameters(), lr=0.0002) # 定义损失函数 criterion = nn.BCELoss() # 训练 GAN for epoch in range(200): for i, data in enumerate(dataloader, 0): # 训练判别器 discriminator.zero_grad() real = data[0].to(device) batch_size = real.size(0) label = torch.full((batch_size,), 1, device=device) output = discriminator(real).view(-1) error_D_real = criterion(output, label) error_D_real.backward() noise = torch.randn(batch_size, 100, device=device) fake = generator(noise) label.fill_(0) output = discriminator(fake.detach()).view(-1) error_D_fake = criterion(output, label) error_D_fake.backward() error_D = error_D_real + error_D_fake optimizer_D.step() # 训练生成器 generator.zero_grad() label.fill_(1) output = discriminator(fake).view(-1) error_G = criterion(output, label) error_G.backward() optimizer_G.step() # 输出损失值 if i % 100 == 0: print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, 200, i, len(dataloader), error_D.item(), error_G.item())) 这段代码定义了一个基于 MNIST 数据集的 GAN,包括一个判别器网络和一个生成器网络。在训练过程中,判别器和生成器分别被训练,通过交替训练来优化模型。训
好的,生成对抗网络(GAN)是一种深度学习模型,它由两个神经网络组成:生成器和判别器。生成器的目标是生成与真实数据相似的假数据,而判别器的目标是区分真实数据和假数据。在训练过程中,生成器和判别器相互竞争,最终生成器可以生成高质量的假数据。下面是使用PyTorch编写的GAN的示例代码: python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader # 定义生成器 class Generator(nn.Module): def __init__(self, latent_dim, img_shape): super(Generator, self).__init__() self.img_shape = img_shape self.model = nn.Sequential( nn.Linear(latent_dim, 128), nn.LeakyReLU(0.2, inplace=True), nn.Linear(128, 256), nn.BatchNorm1d(256, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 512), nn.BatchNorm1d(512, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 1024), nn.BatchNorm1d(1024, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(1024, int(torch.prod(torch.tensor(img_shape)))), nn.Tanh() ) def forward(self, z): img = self.model(z) img = img.view(img.size(0), *self.img_shape) return img # 定义判别器 class Discriminator(nn.Module): def __init__(self, img_shape): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(int(torch.prod(torch.tensor(img_shape))), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid(), ) def forward(self, img): img_flat = img.view(img.size(0), -1) validity = self.model(img_flat) return validity # 定义训练函数 def train(generator, discriminator, dataloader, optimizer_G, optimizer_D, device): adversarial_loss = nn.BCELoss() for epoch in range(n_epochs): for i, (imgs, _) in enumerate(dataloader): # 训练判别器 optimizer_D.zero_grad() real_imgs = imgs.to(device) batch_size = real_imgs.size(0) valid = torch.ones(batch_size, 1).to(device) fake = torch.zeros(batch_size, 1).to(device) z = torch.randn(batch_size, latent_dim).to(device) gen_imgs = generator(z) real_loss = adversarial_loss(discriminator(real_imgs), valid) fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() # 训练生成器 optimizer_G.zero_grad() z = torch.randn(batch_size, latent_dim).to(device) gen_imgs = generator(z) g_loss = adversarial_loss(discriminator(gen_imgs), valid) g_loss.backward() optimizer_G.step() # 打印训练信息 batches_done = epoch * len(dataloader) + i if batches_done % sample_interval == 0: print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())) # 定义超参数 img_shape = (1, 28, 28) latent_dim = 100 n_epochs = 200 batch_size = 64 lr = 0.0002 b1 = 0.5 b2 = 0.999 sample_interval = 400 # 加载数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) ]) mnist_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) dataloader = DataLoader(mnist_dataset, batch_size=batch_size, shuffle=True) # 初始化生成器和判别器 generator = Generator(latent_dim, img_shape).to(device) discriminator = Discriminator(img_shape).to(device) # 定义优化器 optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2)) optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2)) # 训练模型 train(generator, discriminator, dataloader, optimizer_G, optimizer_D, device) 这是一个简单的GAN示例,它可以生成手写数字图像。如果你想了解更多关于GAN的知识,可以参考PyTorch官方文档或者其他深度学习教程。
这里提供一个简单的GAN代码,使用PyTorch实现:python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.utils import save_image# 定义生成器 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.tanh(self.fc3(x)) return x# 定义判别器 class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.sigmoid(self.fc3(x)) return x# 定义超参数 batch_size = 100 input_size = 100 hidden_size = 256 output_size = 784 num_epochs = 200# 加载MNIST数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(.5,), std=(.5,)) ]) train_dataset = dset.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)# 初始化生成器和判别器 G = Generator(input_size, hidden_size, output_size) D = Discriminator(output_size, hidden_size, 1)# 定义损失函数和优化器 criterion = nn.BCELoss() G_optimizer = optim.Adam(G.parameters(), lr=.0002) D_optimizer = optim.Adam(D.parameters(), lr=.0002)# 训练GAN模型 for epoch in range(num_epochs): for i, (images, _) in enumerate(train_loader): # 训练判别器 real_labels = torch.ones(batch_size, 1) fake_labels = torch.zeros(batch_size, 1) real_images = images.view(batch_size, -1) z = torch.randn(batch_size, input_size) fake_images = G(z) D_real_loss = criterion(D(real_images), real_labels) D_fake_loss = criterion(D(fake_images), fake_labels) D_loss = D_real_loss + D_fake_loss D_optimizer.zero_grad() D_loss.backward() D_optimizer.step() # 训练生成器 z = torch.randn(batch_size, input_size) fake_images = G(z) G_loss = criterion(D(fake_images), real_labels) G_optimizer.zero_grad() G_loss.backward() G_optimizer.step() # 打印损失值 if (i+1) % 100 == : print('Epoch [{}/{}], Step [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), D_loss.item(), G_loss.item())) # 保存生成的图像 if (epoch+1) % 10 == : fake_images = fake_images.view(batch_size, 1, 28, 28) save_image(fake_images, './samples/sample_{}.png'.format(epoch+1)) 这个代码实现了一个简单的GAN模型,用于生成手写数字图像。其中,生成器和判别器都是简单的全连接神经网络,损失函数采用二元交叉熵,优化器采用Adam算法。在训练过程中,每隔一定的步数就会打印出当前的损失值,并保存生成的图像。
好的,下面是pytorch实现GAN的步骤: 1.导入必要的库 python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.utils.data import DataLoader import os import numpy as np import torchvision.utils as vutils 2.定义生成器和鉴别器 python class Generator(nn.Module): def __init__(self, ngf, nz, nc): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self, ndf, nc): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input).view(-1, 1).squeeze(1) 3.定义超参数 python # 超参数 batch_size = 64 image_size = 64 nz = 100 ngf = 64 ndf = 64 num_epochs = 50 lr = 0.0002 beta1 = 0.5 ngpu = 1 4.准备数据集 python # 图像处理 transform = transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 数据集 dataset = dset.ImageFolder(root='./data', transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) 5.定义优化器和损失函数 python # 设备 device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") # 初始化生成器和鉴别器 netG = Generator(ngf, nz, 3).to(device) netD = Discriminator(ndf, 3).to(device) # 初始化权重 netG.apply(weights_init) netD.apply(weights_init) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) 6.训练模型 python # 真实标签 real_label = 1. # 假标签 fake_label = 0. # 训练 for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 判别器的训练 netD.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, device=device) output = netD(real_cpu) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() # 生成器的训练 netG.zero_grad() label.fill_(real_label) output = netD(fake) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() # 输出训练状态 if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) # 保存生成器的输出 if (epoch == 0) and (i == 0): vutils.save_image(real_cpu, '%s/real_samples.png' % "./results", normalize=True) if i % 100 == 0: with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() vutils.save_image(fake, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize=True) 以上就是pytorch实现GAN的步骤,其中还包括了权重的初始化、训练状态的输出、保存生成器的输出等。这里只是一个简单的示例,实际使用时还需要根据具体问题进行相应的调整和优化。
好的,以下是一个基于 PyTorch 的 GAN 结构的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.utils.data import DataLoader from torch.autograd import Variable # 定义生成器 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() self.tanh = nn.Tanh() def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) out = self.tanh(out) return out # 定义判别器 class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) out = self.sigmoid(out) return out # 定义超参数 batch_size = 100 learning_rate = 0.0002 num_epochs = 200 # 加载 MNIST 数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) train_dataset = dset.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 初始化网络 input_size = 784 hidden_size = 256 output_size = 1 G = Generator(input_size, hidden_size, input_size) D = Discriminator(input_size, hidden_size, output_size) # 定义损失函数和优化器 criterion = nn.BCELoss() G_optimizer = optim.Adam(G.parameters(), lr=learning_rate) D_optimizer = optim.Adam(D.parameters(), lr=learning_rate) # 训练网络 for epoch in range(num_epochs): for i, (images, _) in enumerate(train_loader): # 训练判别器 real_images = Variable(images.view(-1, input_size)) real_labels = Variable(torch.ones(batch_size)) fake_images = Variable(G(torch.randn(batch_size, input_size))) fake_labels = Variable(torch.zeros(batch_size)) D_real_loss = criterion(D(real_images), real_labels) D_fake_loss = criterion(D(fake_images), fake_labels) D_loss = D_real_loss + D_fake_loss D_optimizer.zero_grad() D_loss.backward() D_optimizer.step() # 训练生成器 fake_images = Variable(G(torch.randn(batch_size, input_size))) fake_labels = Variable(torch.ones(batch_size)) G_loss = criterion(D(fake_images), fake_labels) G_optimizer.zero_grad() G_loss.backward() G_optimizer.step() # 打印损失 print('Epoch [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}'.format(epoch+1, num_epochs, D_loss.data[0], G_loss.data[0])) # 保存模型 torch.save(G.state_dict(), 'G.pth') torch.save(D.state_dict(), 'D.pth') 希望这个示例能够帮助你实现一个 GAN 结构。
gan生成对抗网络是一种深度学习模型,用于生成逼真的图像。在PyTorch中,我们可以使用GAN模型来实战。GAN模型由两个部分组成:生成器和判别器。 首先,我们需要定义生成器模型。生成器模型的目标是接收一个随机向量作为输入,并输出一个逼真的图像。我们可以使用卷积层、反卷积层和激活函数来构建生成器模型。在PyTorch中,我们可以使用nn.Module类来创建生成器模型,并定义forward函数来执行模型的前向传播。 接下来,我们需要定义判别器模型。判别器的目标是接收一个图像作为输入,并判断它是否是真实的图像(来自真实数据集)或是生成器生成的图像。我们可以使用卷积层、激活函数和全连接层来构建判别器模型。同样,在PyTorch中,我们可以使用nn.Module类来创建判别器模型,并定义forward函数来执行模型的前向传播。 完成定义生成器和判别器模型之后,我们需要定义损失函数和优化器。GAN模型的损失函数包括生成器损失和判别器损失。生成器的损失函数主要是为了鼓励生成器生成逼真的图像,而判别器的损失函数主要是为了鼓励判别器将真实图像和生成图像区分开。 在PyTorch中,我们可以使用nn.BCELoss()来定义二元交叉熵损失函数,并使用torch.optim模块中的优化器比如Adam来定义优化器。 最后,我们需要在训练循环中迭代训练生成器和判别器。在每个训练迭代中,我们将随机生成的向量作为输入传给生成器,并将生成的图像与真实图像一起送给判别器。然后,我们计算生成器和判别器的损失,并根据损失来更新参数。这样就可以不断地训练GAN模型,使生成器和判别器的性能逐渐提升。 通过以上步骤,我们可以在PyTorch中实战GAN生成对抗网络。这个过程中,我们需要定义生成器和判别器模型,选择合适的损失函数和优化器,并进行训练迭代。通过不断的迭代训练,我们可以生成逼真的图像。

最新推荐

pytorch GAN生成对抗网络实例

今天小编就为大家分享一篇pytorch GAN生成对抗网络实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

rabbitmq客户端账号密码

在默认情况下,RabbitMQ的客户端账号和密码是"guest"。 但是,默认情况下,这个账号只能在localhost本机下访问,无法远程登录。如果需要添加一个远程登录的用户,可以使用命令rabbitmqctl add_user来添加用户,并使用rabbitmqctl set_permissions设置用户的权限。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [保姆级别带你入门RabbitMQ](https:

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

lua tm1637

TM1637是一种数字管显示驱动芯片,它可以用来控制4位7段数码管的显示。Lua是一种脚本语言,可以用于嵌入式系统和应用程序的开发。如果你想在Lua中使用TM1637驱动数码管,你需要先获取一个适配Lua的TM1637库或者编写自己的驱动代码。然后,你可以通过该库或者代码来控制TM1637芯片,实现数码管的显示功能。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

login_method

`login_method` 可以指代一个函数或方法,它的作用是用于实现用户登录的逻辑。具体实现方式可能因应用场景而异。例如,对于 web 应用程序,`login_method` 可以是一个视图函数,它接受用户提交的登录表单,验证用户信息,如果验证通过则创建会话并将用户信息保存在会话中;对于桌面应用程序,`login_method` 可以是一个类方法,它接受用户输入的登录信息,验证用户身份,如果验证通过则创建用户对象并保存在内存中,以便后续操作使用。总之,`login_method` 的作用是实现用户身份验证并创建用户会话或对象。