帮我写一个用pytorch版本的条件GAN网络
时间: 2023-03-29 22:01:16 浏览: 140
好的,我可以回答这个问题。以下是一个使用 PyTorch 实现的条件 GAN 网络的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import transforms
from torchvision.utils import save_image
# 定义生成器
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape, num_classes):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Linear(latent_dim + num_classes, 128),
nn.BatchNorm1d(128, .8),
nn.LeakyReLU(.2, inplace=True),
nn.Linear(128, 256),
nn.BatchNorm1d(256, .8),
nn.LeakyReLU(.2, inplace=True),
nn.Linear(256, 512),
nn.BatchNorm1d(512, .8),
nn.LeakyReLU(.2, inplace=True),
nn.Linear(512, int(torch.prod(torch.tensor(img_shape)))),
nn.Tanh()
)
def forward(self, noise, labels):
gen_input = torch.cat((self.label_emb(labels), noise), -1)
img = self.model(gen_input)
img = img.view(img.size(), *img_shape)
return img
# 定义判别器
class Discriminator(nn.Module):
def __init__(self, img_shape, num_classes):
super(Discriminator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Linear(num_classes + int(torch.prod(torch.tensor(img_shape))), 512),
nn.LeakyReLU(.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img, labels):
d_in = img.view(img.size(), -1)
d_in = torch.cat((d_in, self.label_emb(labels)), -1)
validity = self.model(d_in)
return validity
# 定义训练函数
def train(generator, discriminator, dataloader, num_epochs, latent_dim, num_classes, device):
adversarial_loss = nn.BCELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=.0002, betas=(.5, .999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=.0002, betas=(.5, .999))
for epoch in range(num_epochs):
for i, (imgs, labels) in enumerate(dataloader):
# 训练判别器
optimizer_D.zero_grad()
real_imgs = imgs.to(device)
labels = labels.to(device)
batch_size = real_imgs.size()
valid = torch.ones(batch_size, 1).to(device)
fake = torch.zeros(batch_size, 1).to(device)
z = torch.randn(batch_size, latent_dim).to(device)
gen_labels = torch.randint(, num_classes, (batch_size,)).to(device)
gen_imgs = generator(z, gen_labels)
real_loss = adversarial_loss(discriminator(real_imgs, labels), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach(), gen_labels), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
z = torch.randn(batch_size, latent_dim).to(device)
gen_labels = torch.randint(, num_classes, (batch_size,)).to(device)
gen_imgs = generator(z, gen_labels)
g_loss = adversarial_loss(discriminator(gen_imgs, gen_labels), valid)
g_loss.backward()
optimizer_G.step()
# 打印训练信息
batches_done = epoch * len(dataloader) + i
if batches_done % 400 == :
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, num_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)
# 保存生成的图像
if epoch % 5 == :
save_image(gen_imgs.data[:25], "images/%d.png" % epoch, nrow=5, normalize=True)
# 设置超参数
latent_dim = 100
img_shape = (1, 28, 28)
num_classes = 10
num_epochs = 200
batch_size = 64
lr = .0002
b1 = .5
b2 = .999
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.5,), (.5,))
])
dataset = MNIST(".", train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
generator = Generator(latent_dim, img_shape, num_classes)
discriminator = Discriminator(img_shape, num_classes)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator.to(device)
discriminator.to(device)
# 训练模型
train(generator, discriminator, dataloader, num_epochs, latent_dim, num_classes, device)
```
这个示例代码实现了一个基于 MNIST 数据集的条件 GAN 网络,可以生成手写数字图像。如果你想要使用其他数据集,可以根据需要修改代码。
阅读全文