帮我用Pytorch写一个两条件的GAN网络
时间: 2023-03-29 11:01:42 浏览: 95
好的,我可以回答这个问题。以下是一个基于 Pytorch 的两条件 GAN 网络的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义生成器网络
class Generator(nn.Module):
def __init__(self, input_dim, output_dim):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, output_dim)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.tanh(self.fc3(x))
return x
# 定义判别器网络
class Discriminator(nn.Module):
def __init__(self, input_dim):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_dim, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
# 定义训练函数
def train_gan(generator, discriminator, data, num_epochs, batch_size, lr):
criterion = nn.BCELoss()
optimizer_g = optim.Adam(generator.parameters(), lr=lr)
optimizer_d = optim.Adam(discriminator.parameters(), lr=lr)
for epoch in range(num_epochs):
for i in range(, len(data), batch_size):
# 训练判别器
discriminator.zero_grad()
real_data = data[i:i+batch_size]
real_labels = torch.ones(len(real_data), 1)
fake_data = generator(torch.randn(len(real_data), 2))
fake_labels = torch.zeros(len(real_data), 1)
real_pred = discriminator(real_data)
fake_pred = discriminator(fake_data.detach())
d_loss = criterion(real_pred, real_labels) + criterion(fake_pred, fake_labels)
d_loss.backward()
optimizer_d.step()
# 训练生成器
generator.zero_grad()
fake_data = generator(torch.randn(len(real_data), 2))
fake_labels = torch.ones(len(real_data), 1)
fake_pred = discriminator(fake_data)
g_loss = criterion(fake_pred, fake_labels)
g_loss.backward()
optimizer_g.step()
# 输出损失
print('Epoch [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'.format(epoch+1, num_epochs, d_loss.item(), g_loss.item()))
# 测试代码
data = np.random.normal(size=(100, 2))
generator = Generator(2, 2)
discriminator = Discriminator(2)
train_gan(generator, discriminator, data, num_epochs=100, batch_size=32, lr=.001)
```
这个 GAN 网络有两个输入条件,输出也是两个维度。你可以根据自己的需求修改输入和输出的维度。
阅读全文