用深度可分离卷积代替3×3卷积完整pytorch代码
时间: 2023-07-09 11:41:17 浏览: 112
当使用深度可分离卷积代替3x3卷积时,可以减少参数数量,从而减少模型大小和计算复杂度。下面是使用深度可分离卷积代替3x3卷积的PyTorch代码示例:
```python
import torch.nn as nn
# 3x3卷积
conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
# 深度可分离卷积
depthwise_conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1, groups=3)
pointwise_conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=1, stride=1, padding=0)
separable_conv = nn.Sequential(depthwise_conv, pointwise_conv)
```
这里使用了两个卷积层来代替3x3卷积。首先使用深度可分离卷积,即先使用3x3深度卷积(groups参数指定为输入通道数,即3),再使用1x1卷积,来代替3x3卷积。可以看到,使用深度可分离卷积后,参数数量从64x3x3x3=1728降低到3x3x3+3x1x1x64=195,大大减少了参数数量。
相关问题
Deeplabv3+中ASPP模块用深度可分离卷积代替3×3卷积完整pytorch代码
以下是使用深度可分离卷积替代3x3卷积的ASPP模块的完整PyTorch代码:
```python
import torch.nn as nn
import torch.nn.functional as F
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels=256, rates=[6, 12, 18]):
super(ASPP, self).__init__()
# 1x1 convolution layer
self.conv_1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
# Atrous Spatial Pyramid Pooling (ASPP) layers
self.conv_3x3_1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[0], dilation=rates[0], groups=out_channels),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.conv_3x3_2 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[1], dilation=rates[1], groups=out_channels),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.conv_3x3_3 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=rates[2], dilation=rates[2], groups=out_channels),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.conv_1x1_out = nn.Sequential(
nn.Conv2d(out_channels * 4, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
# Apply 1x1 convolution
x_1x1 = self.conv_1x1(x)
# Apply Atrous Spatial Pyramid Pooling (ASPP)
x_3x3_1 = self.conv_3x3_1(x)
x_3x3_2 = self.conv_3x3_2(x)
x_3x3_3 = self.conv_3x3_3(x)
x_avg_pool = F.adaptive_avg_pool2d(x, (1, 1))
x_avg_pool = self.conv_1x1(x_avg_pool)
x_avg_pool = F.interpolate(x_avg_pool, size=x_3x3_3.size()[2:], mode='bilinear', align_corners=True)
# Concatenate the outputs of all ASPP layers
out = torch.cat([x_1x1, x_3x3_1, x_3x3_2, x_3x3_3, x_avg_pool], dim=1)
# Apply 1x1 convolution to the concatenated output
out = self.conv_1x1_out(out)
return out
```
其中,`in_channels`为输入特征图的通道数,`out_channels`为ASPP模块输出的通道数,`rates`为ASPP模块中各个卷积层的采样率。可以根据具体的任务和网络结构对这些参数进行调整。
阅读全文