用pytorch帮我写一段注意力机制的代码,可以用在yolov5上面的
时间: 2023-04-09 16:00:34 浏览: 111
好的,以下是使用 PyTorch 实现注意力机制的代码,可以用在 YOLOv5 上:
```python
import torch
import torch.nn as nn
class Attention(nn.Module):
def __init__(self, in_channels, out_channels):
super(Attention, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv3 = nn.Conv2d(out_channels, 1, kernel_size=1)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg = torch.mean(x, dim=1, keepdim=True)
avg = self.conv1(avg)
avg = self.relu(avg)
max = torch.max(x, dim=1, keepdim=True)[0]
max = self.conv2(max)
max = self.relu(max)
out = avg + max
out = self.conv3(out)
out = self.sigmoid(out)
return out * x
```
这段代码实现了一个简单的注意力机制,其中 `in_channels` 是输入张量的通道数,`out_channels` 是输出张量的通道数。在 `forward` 方法中,我们首先计算输入张量的平均值和最大值,然后将它们分别通过两个卷积层进行特征变换,最后将它们相加并通过一个 sigmoid 函数得到注意力权重。最终输出的张量就是输入张量乘以注意力权重。
在 YOLOv5 中使用这个注意力模块的方法是,在 YOLOv5 的网络结构中加入这个模块,例如:
```python
import torch
import torch.nn as nn
from models.common import Conv, BottleneckCSP, SPP, DWConv
class YOLOv5(nn.Module):
def __init__(self, num_classes=80):
super(YOLOv5, self).__init__()
self.backbone = nn.Sequential(
Conv(3, 32, 3, 1),
Conv(32, 64, 3, 2),
BottleneckCSP(64, 64, 1),
Conv(64, 128, 3, 2),
BottleneckCSP(128, 128, 3),
Conv(128, 256, 3, 2),
BottleneckCSP(256, 256, 15),
Conv(256, 512, 3, 2),
SPP(512, 512),
BottleneckCSP(512, 512, 7),
Conv(512, 256, 1),
DWConv(256, 512, 3, 2),
BottleneckCSP(512, 512, 3),
Conv(512, 256, 1),
DWConv(256, 512, 3, 2),
BottleneckCSP(512, 512, 3),
Conv(512, 256, 1),
DWConv(256, 512, 3, 2),
BottleneckCSP(512, 512, 3),
)
self.head = nn.Sequential(
Conv(512, 256, 1),
nn.Upsample(scale_factor=2),
BottleneckCSP(512, 256, 3, False),
Conv(256, 128, 1),
nn.Upsample(scale_factor=2),
BottleneckCSP(256, 128, 3, False),
Conv(128, 128, 3, 2),
Attention(128, 256), # 加入注意力模块
BottleneckCSP(256, 256, 3, False),
Conv(256, 256, 3, 2),
Attention(256, 512), # 加入注意力模块
BottleneckCSP(512, 512, 3, False),
Conv(512, 512, 3, 2),
Attention(512, 1024), # 加入注意力模块
SPP(1024, 1024),
BottleneckCSP(1024, 1024, 3, False),
Conv(1024, 512, 1),
nn.Upsample(scale_factor=2),
BottleneckCSP(1024, 512, 3, False),
Conv(512, 256, 1),
nn.Upsample(scale_factor=2),
BottleneckCSP(512, 256, 3, False),
Conv(256, num_classes + 5, 1, 1, relu=False),
)
def forward(self, x):
x = self.backbone(x)
x = self.head(x)
return x
```
在 YOLOv5 的头部中加入了三个注意力模块,分别在通道数为 128、256 和 512 的特征图上进行注意力加权。这样就可以让 YOLOv5 更加关注重要的特征,提高检测精度。
阅读全文